K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 9 2016

a) \(\frac{1}{5.8}+\frac{1}{8.11}+\frac{1}{11.14}+....+\frac{1}{x\left(x+3\right)}=\frac{101}{1540}\)

\(=3.\left(\frac{1}{5.8}+\frac{1}{8.11}+\frac{1}{11.14}+...+\frac{1}{x\left(x+3\right)}\right)=\frac{101}{1540}.3\)

\(=\frac{1}{5}-\frac{1}{8}+\frac{1}{8}-\frac{1}{11}+\frac{1}{11}-\frac{1}{14}+...+\frac{1}{x}-\frac{1}{x.3}=\frac{303}{1540}\)

\(=\frac{1}{5}-\frac{1}{x+3}=\frac{303}{1540}\)

\(=\frac{1}{x+3}=\frac{1}{5}-\frac{303}{1540}\)

\(=\frac{1}{x+3}=\frac{1}{308}\)

\(x+3=308\)

\(\Rightarrow x=305\)

=1/5-1/x(x+3)

=x=98

25 tháng 9 2016

<=> \(\frac{1}{3}\cdot\left(\frac{1}{5}-\frac{1}{8}+\frac{1}{8}-\frac{1}{11}+...+\frac{1}{x}-\frac{1}{x+3}\right)=\frac{101}{1540}\)

<=>\(\frac{1}{3}\cdot\left(\frac{1}{5}-\frac{1}{x+3}\right)=\frac{101}{1540}\)

<=>\(\frac{1}{5}-\frac{1}{x+3}=\frac{101}{1540}\cdot3=\frac{303}{1540}\)

<=>\(\frac{1}{x+3}=\frac{1}{5}-\frac{303}{1540}=\frac{1}{308}\)

<=>\(x+3=308\)

<=>\(x=305\)

7 tháng 3 2016

(1/2.5+1/5.8+....+1/65.68)x=19/68+7/34=33/68

(1/2.5+1/5.8+.....+1/65.68).3.x=33/68.3=99/68

(3/2.5+3/5.8+........3/65.68)x =99/68

(1/2-1/68)x=99/68

33/68x=99/68

=>x=3

cho mình nha

đối với câu a :

nhân 2 ở tử số còn mẫu số giữ nguyên:

a)1/21 + 1/28 + 1/36 + ... + 2/x(x+1) = 2/9

=> 2/42 + 2/56 + 2/72 + ... + 2/x(x+1) = 2/9

=> 2 (1/42 + 1/56 + 1/72 + ... + 1/x(x+1) =2/9

=> 2 (1/6*7 + 1/7*8 + 1/8*9 + ... + 1/x(x+1) = 2/9

=> 2 ( 1/6 - 1/7 + 1/7 - 1/8 + ... +1/x - 1/x+1 = 2/9

=> 2 ( 1/6 - 1/x+1 ) = 2/9

=> 1/6 - 1/x+1 = 1/9

=> 1/x+1 = 1/6 - 1/9

=> 1/x+1 = 1/18

=> x+1 =18

=> x= 17 

chúc các bn học tốt!

7 tháng 9 2016

a.\(\frac{x+1}{10}+\frac{x+1}{11}+\frac{x+1}{12}=\frac{x+1}{13}+\frac{x+1}{14}\Rightarrow\frac{x+1}{10}+\frac{x+1}{11}+\frac{x+1}{12}-\frac{x+1}{13}-\frac{x+1}{14}=0\)

\(\Rightarrow\left(x+1\right)\left(\frac{1}{10}+\frac{1}{11}+\frac{1}{12}-\frac{1}{13}-\frac{1}{14}\right)=0\)

Mà: \(\frac{1}{10}+\frac{1}{11}+\frac{1}{12}-\frac{1}{13}-\frac{1}{14}\ne0\Rightarrow x+1=0\Rightarrow x=-1\)

b.

\(\frac{x+4}{1990}+\frac{x+3}{1991}=\frac{x+2}{1992}+\frac{x+1}{1993}\Rightarrow2+\frac{x+4}{1990}+\frac{x+3}{1991}=2+\frac{x+2}{1992}+\frac{x+1}{1993}\)

\(\Rightarrow\left(1+\frac{x+4}{1990}\right)+\left(1+\frac{x+3}{1991}\right)=\left(1+\frac{x+2}{1992}\right)+\left(1+\frac{x+1}{1993}\right)\)

\(\Rightarrow\frac{x+1994}{1990}+\frac{x+1994}{1991}=\frac{x+1994}{1992}+\frac{x+1994}{1993}\)

\(\Rightarrow\frac{x+1994}{1990}+\frac{x+1994}{1991}-\frac{x+1994}{1992}-\frac{x+1994}{1993}=0\)

\(\Rightarrow\left(x+1994\right)\left(\frac{1}{1990}+\frac{1}{1991}-\frac{1}{1992}-\frac{1}{1993}\right)=0\)

\(\frac{1}{1990}+\frac{1}{1991}-\frac{1}{1992}-\frac{1}{1993}\ne0\Rightarrow x+1994=0\Rightarrow x=-1994\)

14 tháng 1 2017

\(\frac{1}{1.2.3}+\frac{1}{2.3.4}+...+\frac{1}{98.99.100}-3x=\frac{1}{1.2.3.4}+\frac{1}{2.3.4.5}+...+\frac{1}{27.28.29.30}\)

\(\Leftrightarrow\frac{1}{2}\left(\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+...+\frac{1}{98.99}-\frac{1}{99.100}\right)-3x=\frac{1}{3}\left(\frac{1}{1.2.3}-\frac{1}{2.3.4}+\frac{1}{2.3.4}-\frac{1}{3.4.5}+...+\frac{1}{27.28.29}-\frac{1}{28.29.30}\right)\)

\(\Leftrightarrow\frac{1}{2}\left(\frac{1}{1.2}-\frac{1}{99.100}\right)-3x=\frac{1}{3}\left(\frac{1}{1.2.3}-\frac{1}{28.29.30}\right)\)

\(\Rightarrow\frac{4949}{19800}-3x=\frac{451}{8120}\)

\(\Rightarrow3x=\frac{4949}{19800}-\frac{451}{8120}\)

\(\Rightarrow x=\left(\frac{4949}{19800}-\frac{451}{8120}\right):3\)

1 tháng 9 2019

a, \(\frac{1}{5.6}+\frac{1}{6.7}+...+\frac{1}{x\left(x+1\right)}=\frac{13}{90}\)

\(\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}+...+\frac{1}{x}-\frac{1}{x+1}=\frac{13}{90}\)

\(\frac{1}{5}-\frac{1}{x+1}=\frac{13}{90}\)

\(\frac{1}{x+1}=\frac{1}{5}-\frac{13}{90}\)

\(\frac{1}{x+1}=\frac{18}{90}-\frac{13}{90}\)

\(\frac{1}{x+1}=\frac{1}{18}\)

⇒ x + 1 = 18

⇒ x = 17

Vậy x = 17

b, \(\frac{1}{1.4}+\frac{1}{4.7}+\frac{1}{7.10}+...+\frac{1}{x\left(x+3\right)}=\frac{49}{148}\)

\(\frac{3}{1.4}+\frac{3}{4.7}+\frac{3}{7.10}+...+\frac{3}{x\left(x+3\right)}=\frac{49.3}{148}\)

\(1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+...+\frac{1}{x}-\frac{1}{x+3}=\frac{147}{148}\)

\(1-\frac{1}{x+3}=\frac{147}{148}\)

\(\frac{1}{x+3}=1-\frac{147}{148}\)

\(\frac{1}{x+3}=\frac{1}{148}\)

⇒ x + 3 = 148

⇒ x = 145

Vậy x = 145