Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(\left(2x-3\right)^2=16\)
=> \(2x-3=4\)
=> \(2x=4+3=7\)
=> \(x=\frac{7}{2}=3,5\)
b) \(\left(3x-2\right)^5=-243\)
=> \(3x-2=-3\)
=> \(3x=-3+2=-1\)
=> \(x=-\frac{1}{3}\)
a) (2x-3)^2=16
có 2 trường hợp:
_ 2x-3=-4 suy ra x=1/2
_ 2x-3=4 suy ra x=7/2
vậy x=1/2 hoặc x=7/2
b) tương tự câu a) nhưng chỉ có một trường hợp là 3x-2=-3 thôi. coi chừng bị lừa
\(a,2\left(x-1\right)-x\left(3-x\right)=x^2\)
\(\Leftrightarrow2x-2-3x+x^2=x^2\)
\(\Leftrightarrow\left(2x-3x\right)+\left(x^2-x^2\right)-2=0\)
\(\Leftrightarrow-\left(x+2\right)=0\Leftrightarrow x+2=0\Leftrightarrow x=-2\)
\(b,3x\left(x+5\right)-2\left(x+5\right)=3x^2\)
\(\Leftrightarrow3x^2+15x-2x-10=3x^2\)
\(\Leftrightarrow\left(3x^2-3x^2\right)+\left(15x-2x\right)-10=0\)
\(\Leftrightarrow13x-10=0\Leftrightarrow13x=10\Leftrightarrow x=\frac{10}{13}\)
23x+2=4x+5
23x+2=22.(x+5)
23x+2=22x+10
=>3x+2=2x+10
=>3x-2x=-2+10
=>(3-2)x=8
=>x=8
Chúc bn học tốt !!!
a,\(\left(x-1\right)^2-\left(2x\right)^2=0< =>\left(x-1-2x\right)\left(x-1+2x\right)=0\)
\(< =>\left(-x-1\right)\left(3x-1\right)=0< =>\orbr{\begin{cases}x=-1\\x=\frac{1}{3}\end{cases}}\)
b,\(\left(3x-5\right)^2-x\left(3x-5\right)=0< =>\left(3x-5\right)\left(3x-5-x\right)=0\)
\(< =>\orbr{\begin{cases}x=\frac{5}{3}\\x=\frac{5}{2}\end{cases}}\)
a, \(\left(x-1\right)^2-\left(2x\right)^2=0\Leftrightarrow\left(x-1-2x\right)\left(x-1+2x\right)=0\)
\(\Leftrightarrow\left(x+1\right)\left(3x-1\right)=0\Leftrightarrow x=-1;x=\frac{1}{3}\)
b, \(\left(3x-5\right)^2-x\left(3x-5\right)=0\)
\(\Leftrightarrow\left(3x-5\right)\left(3x-5-x\right)=0\Leftrightarrow\left(3x-5\right)\left(2x-5\right)=0\Leftrightarrow x=\frac{5}{3};x=\frac{5}{2}\)
\(\left(3x-2\right)^5=-243\)
\(\Leftrightarrow\left(3x-2\right)^5=-3^5\)
\(\Leftrightarrow3x-2=-3\)
\(\Leftrightarrow3x=-1\)
\(\Leftrightarrow x=-\frac{1}{3}\)
\(\left(3x-2\right)^5=-243\)
\(\Leftrightarrow\left(3x-2\right)^2=\left(-3\right)^5\)
\(\Rightarrow3x-2=-3\)
\(\Rightarrow3x=-3+2\)
\(\Rightarrow3x=-1\)
\(\Rightarrow x=-\frac{1}{3}\)