K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

b: =>căn x+1=-2(loại)

c: =>|x+1|=3

=>x+1=3 hoặc x+1=-3

=>x=-4 hoặc x=2

d: =>x-3=16

=>x=19

9 tháng 10 2016

CÁC câu này cứ bình phương 2 vế là ra ấy mà 

18 tháng 6 2017

Ta có : \(9^{x-1}=\frac{1}{9}\)

=> \(9^{x-1}=9^{-1}\)

=> x - 1 = -1

=> x = 0 

ko biết bạn học mũ âm chưa nêu chưa thì mk xin lỗi 

=> 

18 tháng 6 2017

Cảm ơn bạn nha. Còn mấy phần kia bạn biết làm không?

20 tháng 12 2018

a) \(\frac{1}{4}+\frac{1}{3}:2x=-5\)

\(\frac{1}{3}:2x=\frac{-21}{4}\)

\(2x=\frac{-4}{63}\)

\(x=\frac{2}{63}\)

20 tháng 12 2018

b) \(\left(3x-\frac{1}{4}\right)\left(x+\frac{1}{2}\right)=0\)

\(\Rightarrow\orbr{\begin{cases}3x-\frac{1}{4}=0\\x+\frac{1}{2}=0\end{cases}}\)

\(\Rightarrow\orbr{\begin{cases}x=\frac{1}{12}\\x=\frac{-1}{2}\end{cases}}\)

Vậy.........

18 tháng 6 2017

1) \(9^{x-1}=\dfrac{1}{9}\) (1)

\(\Leftrightarrow3^{2x-2}=3^{-2}\)

\(\Leftrightarrow2x-2=-2\)

\(\Leftrightarrow2x=0\)

\(\Leftrightarrow x=0\)

Vậy tập nghiệm phương trình (1) là \(S=\left\{0\right\}\)

2) \(\dfrac{1}{3}:\sqrt{7-3x^2}=\dfrac{2}{15}\) (2)

\(\Leftrightarrow\dfrac{1}{3}\cdot\dfrac{1}{\sqrt{7-3x^2}}=\dfrac{2}{15}\)

\(\Leftrightarrow\dfrac{1}{3\sqrt{7-3x^2}}=\dfrac{2}{15}\)

\(\Leftrightarrow15=6\sqrt{7-3x^2}\)

\(\Leftrightarrow6\sqrt{7-3x^2}=15\)

\(\Leftrightarrow\sqrt{7-3x^2}=\dfrac{5}{2}\)

\(\Leftrightarrow7-3x^2=\dfrac{25}{4}\)

\(\Leftrightarrow-3x^2=\dfrac{25}{4}-7\)

\(\Leftrightarrow-3x^2=-\dfrac{3}{4}\)

\(\Leftrightarrow x^2=\dfrac{1}{4}\)

\(\Leftrightarrow x=\pm\dfrac{1}{2}\)

\(\Leftrightarrow\left[{}\begin{matrix}x=-\dfrac{1}{2}\\x=\dfrac{1}{2}\end{matrix}\right.\)

Vậy tập nghiệm phương trình (2) là \(S=\left\{-\dfrac{1}{2};\dfrac{1}{2}\right\}\)

18 tháng 6 2017

2 phần trên bạn giải theo kiến thức lớp mấy vậy?

19 tháng 2 2018

      \(\frac{x+2}{327}+\frac{x+3}{326}+\frac{x+4}{325}+\frac{x+5}{324}+\frac{x+349}{5}=0\)

\(\Leftrightarrow\)\(\frac{x+2}{327}+1+\frac{x+3}{326}+1+\frac{x+4}{325}+1+\frac{x+5}{324}+1 +\frac{x+349}{5}-4=0\)

\(\Leftrightarrow\)\(\frac{x+329}{327}+\frac{x+329}{326}+\frac{x+329}{325}+\frac{x+329}{324}+\frac{x+329}{5}=0\)

\(\Leftrightarrow\)\(\left(x+329\right)\left(\frac{1}{327}+\frac{1}{326}+\frac{1}{325}+\frac{1}{324}+\frac{1}{5}\right)=0\)

\(\Leftrightarrow\)\(x+329=0\)   (vì  1/327 + 1/326 + 1/325 + 1/324 + 1/5  khác  0  )

\(\Leftrightarrow\)\(x=-329\)

19 tháng 2 2018

Bài 1 : 

\(\frac{x+2}{327}+\frac{x+3}{326}+\frac{x+4}{325}+\frac{x+5}{324}+\frac{x+349}{5}=0\)

\(\Leftrightarrow\)\(\left(\frac{x+2}{327}+1\right)+\left(\frac{x+3}{326}+1\right)+\left(\frac{x+4}{325}+1\right)+\left(\frac{x+5}{324}+1\right)+\left(\frac{x+349}{5}-4\right)=0\)

\(\Leftrightarrow\)\(\frac{x+329}{327}+\frac{x+329}{326}+\frac{x+329}{325}+\frac{x+329}{324}+\frac{x+329}{5}=0\)

\(\Leftrightarrow\)\(\left(x+329\right)\left(\frac{1}{327}+\frac{1}{326}+\frac{1}{325}+\frac{1}{324}+\frac{1}{5}\right)=0\)

Vì \(\left(\frac{1}{327}+\frac{1}{326}+\frac{1}{325}+\frac{1}{324}+\frac{1}{5}\right)\ne0\)

\(\Rightarrow\)\(x+329=0\)

\(\Rightarrow\)\(x=-329\)

Vậy \(x=-329\)

2 tháng 8 2017

\(1.\sqrt{x-1}=2\)

\(\Rightarrow x-1=4\)

\(\Rightarrow x=5\)

Vậy \(x=5.\)

\(2.\sqrt{3-x}=1\)

\(\Rightarrow3-x=1\)

\(\Rightarrow x=2\)

\(3.\left|x-1\right|+\left|x^2-1\right|=0\)

\(\Rightarrow\left\{{}\begin{matrix}\left|x-1\right|=0\\\left|x^2-1\right|=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x-1=0\\x^2=1\end{matrix}\right.\)

\(\Rightarrow x=1\)

\(4.\left|2x-3\right|-\left|x-1\right|=0\)

\(\Rightarrow\left|2x-3\right|=\left|x-1\right|\)

\(\Rightarrow\left[{}\begin{matrix}2x-3=x-1\\2x-3=-x+1\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}2x-x=3-1\\2x+x=3+1\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x=2\\x=\dfrac{4}{3}\end{matrix}\right.\)

Vậy \(\left[{}\begin{matrix}x=2\\x=\dfrac{4}{3}\end{matrix}\right..\)

3: |2x-1|=|x+1|

=>2x-1=x+1 hoặc 2x-1=-x-1

=>x=2 hoặc 3x=0

=>x=2 hoặc x=0

4: \(\Leftrightarrow\left\{{}\begin{matrix}x+\sqrt{5}=0\\y-\sqrt{3}=0\\x-y-z=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-\sqrt{5}\\y=\sqrt{3}\\z=x-y=-\sqrt{5}-\sqrt{3}\end{matrix}\right.\)