Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) x4 - 16x2 = 0
<=> ( x2 )2 - ( 4x )2 = 0
<=> ( x2 - 4x )( x2 + 4x ) = 0
<=> [ x( x - 4 ) ][ x( x + 4 ) ] = 0
<=> x( x - 4 )x( x + 4 ) = 0
<=> x2( x - 4 )( x + 4 ) = 0
<=> \(\hept{\begin{cases}x^2=0\\x-4=0\\x+4=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=0\\x=\pm4\end{cases}}\)( thay bằng dấu hoặc hộ mình nhé )
b) 9x2 + 6x + 1 = 0
<=> ( 3x )2 + 2.3x.1 + 12 = 0
<=> ( 3x + 1 )2 = 0
<=> 3x + 1 = 0
<=> 3x = -1
<=> x = -1/3
c) x2 - 6x = 16
<=> x2 - 6x - 16 = 0
<=> x2 + 2x - 8x - 16 = 0
<=> x( x + 2 ) - 8( x + 2 ) = 0
<=> ( x + 2 )( x - 8 ) = 0
<=> \(\orbr{\begin{cases}x+2=0\\x-8=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=-2\\x=8\end{cases}}\)
d) 9x2 + 6x = 80
<=> 9x2 + 6x - 80 = 0
<=> 9x2 + 30x - 24x - 80 = 0
<=> 9x( x + 10/3 ) - 24( x + 10/3 ) = 0
<=> ( x + 10/3 )( 9x - 24 ) = 0
<=> \(\orbr{\begin{cases}x+\frac{10}{3}=0\\9x-24=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=-\frac{10}{3}\\x=\frac{8}{3}\end{cases}}\)
e) Áp dụng công thức an.bn = ( ab )n ta có :
25( 2x - 1 )2 - 9( x + 1 )2 = 0
<=> 52( 2x - 1 )2 - 32( x + 1 )2 = 0
<=> [ 5( 2x - 1 ) ]2 - [ 3( x + 1 ) ]2 = 0
<=> ( 10x - 5 )2 - ( 3x + 3 )2 = 0
<=> [ ( 10x - 5 ) - ( 3x + 3 ) ][ ( 10x - 5 ) + ( 3x + 3 ) ] = 0
<=> ( 10x - 5 - 3x - 3 )( 10x - 5 + 3x + 3 ) = 0
<=> ( 7x - 8 )( 13x - 2 ) = 0
<=> \(\orbr{\begin{cases}7x-8=0\\13x-2=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=\frac{8}{7}\\x=\frac{2}{13}\end{cases}}\)
Bài làm :
a) x4 - 16x2 = 0
<=> ( x2 )2 - ( 4x )2 = 0
<=> ( x2 - 4x )( x2 + 4x ) = 0
<=> [ x( x - 4 ) ][ x( x + 4 ) ] = 0
<=> x( x - 4 )x( x + 4 ) = 0
<=> x2( x - 4 )( x + 4 ) = 0
Vậy x=0 hoặc x=±4
b) 9x2 + 6x + 1 = 0
<=> ( 3x )2 + 2.3x.1 + 12 = 0
<=> ( 3x + 1 )2 = 0
<=> 3x + 1 = 0
<=> 3x = -1
<=> x = -1/3
c) x2 - 6x = 16
<=> x2 - 6x - 16 = 0
<=> x2 + 2x - 8x - 16 = 0
<=> x( x + 2 ) - 8( x + 2 ) = 0
<=> ( x + 2 )( x - 8 ) = 0
\(\Leftrightarrow\orbr{\begin{cases}x+2=0\\x-8=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=-2\\x=8\end{cases}}\)
d) 9x2 + 6x = 80
<=> 9x2 + 6x - 80 = 0
<=> 9x2 + 30x - 24x - 80 = 0
<=> 9x( x + 10/3 ) - 24( x + 10/3 ) = 0
<=> ( x + 10/3 )( 9x - 24 ) = 0
\(\Leftrightarrow\orbr{\begin{cases}x+\frac{10}{3}=0\\9x-24=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=-\frac{10}{3}\\x=\frac{8}{3}\end{cases}}\)
e) 25( 2x - 1 )2 - 9( x + 1 )2 = 0
<=> 52( 2x - 1 )2 - 32( x + 1 )2 = 0
<=> [ 5( 2x - 1 ) ]2 - [ 3( x + 1 ) ]2 = 0
<=> ( 10x - 5 )2 - ( 3x + 3 )2 = 0
<=> [ ( 10x - 5 ) - ( 3x + 3 ) ][ ( 10x - 5 ) + ( 3x + 3 ) ] = 0
<=> ( 10x - 5 - 3x - 3 )( 10x - 5 + 3x + 3 ) = 0
<=> ( 7x - 8 )( 13x - 2 ) = 0
\(\Leftrightarrow\orbr{\begin{cases}7x-8=0\\13x-2=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=\frac{8}{7}\\x=\frac{2}{13}\end{cases}}\)
a) Ta có : x4 - 16x2 = 0
=> x4 - 8x2 - 8x2 + 64 = 64
=> x2(x2 - 8) - 8(x2 - 8) = 64
=> (x2 - 8)2 = 64
=> \(\orbr{\begin{cases}x^2-8=8\\x^2-8=-8\end{cases}}\Rightarrow\orbr{\begin{cases}x^2=16\\x^2=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=\pm4\\x=0\end{cases}}\Rightarrow x\in\left\{4;-4;0\right\}\)
b) Ta có 9x2 + 6x + 1 = 0
=> 9x2 + 3x + 3x + 1 = 0
=> 3x(3x + 1) + (3x + 1) = 0
=> (3x + 1)2 = 0
=> 3x + 1 = 0
=> x = -1/3
c) Ta có x2 - 6x = 16
=> x2 - 6x + 9 = 25
=> (x - 3)2 = 25
=> \(\orbr{\begin{cases}x-3=5\\x-3=-5\end{cases}}\Rightarrow\orbr{\begin{cases}x=8\\x=-2\end{cases}}\Rightarrow x\in\left\{8;-2\right\}\)
d) 9x2 + 6x = 80
=> 9x2 + 6x + 1 = 81
=> (3x + 1)2 = 81
=> \(\orbr{\begin{cases}3x+1=9\\3x+1=-9\end{cases}}\Rightarrow\orbr{\begin{cases}x=\frac{8}{3}\\x=-\frac{10}{3}\end{cases}\Rightarrow x\in}\left\{\frac{8}{3};\frac{-10}{3}\right\}\)
e) 25(2x - 1)2 - 9(x + 1)2 = 0
=> [5(2x - 1)]2 - [3(x + 1)]2 = 0
=> (10x - 5)2 - (3x + 3)2 = 0
=> (10x - 5 - 3x - 3)(10x - 5 + 3x + 3) = 0
=> (7x - 8)(13x - 2) = 0
=> \(\orbr{\begin{cases}7x=8\\13x=2\end{cases}}\Rightarrow\orbr{\begin{cases}x=\frac{8}{7}\\x=\frac{2}{13}\end{cases}}\)
a. x.(x+3)-x2+15=0
=> x^2 + 3x - x^2 + 15 = 0
=> 3x + 15 = 0
=> 3x = -15
=> x = -5
vậy_
b. (2x-1)(x+3) - x(2x-6) =15
=> 2x^2 + 6x - x - 3 - 2x^2 + 6x = 15
=> x - 3 = 15
=> x = 18
vậy_
c. x3 -36x = 0
=> x(x^2 - 36) = 0
=> x = 0 hoặc x^2 - 36 = 0
=> x = 0 hoặc x^2 = 36
=> x = 0 hoặc x = 6 hoặc x = -6
vậy_
d. 6x2 + 6x =x2+2x+1
=> 6x(x + 1) = (x + 1)^2
=> 6x(x + 1) - (x + 1)^2 = 0
=> (x + 1)(6x - x - 1) = 0
=> (x + 1)(5x - 1) = 0
=> x = -1 hoặc 5x = 1
=> x = -1 hoặc x = 1/5
vậy_
e. x(3x+1)=1-9x2
=> x(3x + 1) = (1 - 3x)(1 + 3x)
=> x(3x + 1) - (1 - 3x)(1 + 3x) = 0
=> (3x + 1)(x - 1 + 3x) = 0
=> (3x + 1)(4x - 1) = 0
=> 3x + 1 = 0 hoặc 4x - 1 = 0
=> 3x = -1 hoặc 4x = 1
=> x = -1/3 hoặc x = 1/4
vậy_
a) \(\left(y-1\right)^2=9\)
\(\Rightarrow\left(y-1\right)^2=3^2=\left(-3\right)^2\)
\(\Rightarrow x-1=3\Rightarrow x=4\)
\(\Rightarrow x-1=-3\Rightarrow x=-2\)
Vậy: \(x=4\) hoặc \(-2\)
a)(x-2)(x2+2x+4)-19=0
\(\Rightarrow\)x3-8-19=0
\(\Rightarrow\)x3-27=0
\(\Rightarrow\)(x-3)(x2+3x+9)=0
\(\Rightarrow\left[{}\begin{matrix}x-3=0\\x^2+3x+9=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0+3\\x^2+3x=0-9\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=3\\x^2+3x=-9\end{matrix}\right.\)
(6x-1)(6x+1)-15=0
\(\Rightarrow\)36x2-1-15=0
\(\Rightarrow\)36x2-16=0
Ik mk nha, hôm nay ngày mai, ngày kia mk ik 3 lần lại cho bạn (thành 9 lần)
Nhớ kb với mìn lun nha!! Mk rất vui đc làm quen vs bạn, cảm ơn mn nhìu lắm
a/=> 9x2 - 6x + 1 - (9x2 + 12x + 4)=0 => 9x2 - 6x + 1 - 9x2 - 12x - 4 =0 => -18x - 3 =0 => -18x = 3 => x = -1/6 b/=>4x2 + 4x + 1 - (x2 - 2x + 1)=0 => 4x2 + 4x + 1 - x2 + 2x - 1 =0 => 3x2 + 6x =0 => 3x(x+2)=0 => trường hợp 1: 3x=0=>x=0 ; trường hợp 2: x+2=0=>x=-2 c/=> x2 - 2*2*x + 22=0 => (x - 2)2 =0 => x-2=0 => x=2 d/=> x2 - 2*5*x + 52 =0 => (x - 5)2 =0 => x-5=0 => x=5 e/=> 9x2 + 6x - 3 =0 => 9x2 - 3x + 9x - 3 =0 => 3x(3x - 1) + 3(3x - 1) =0 => (3x + 3)(3x - 1) =0 => trường hợp1: 3x+3=0 =>3x=-3=>x=-1 ; trường hợp2: 3x-1=0=>x=1/3
a) Ta có: \(x^4-16x^2=0\)
\(\Leftrightarrow x^2\left(x^2-16\right)=0\)
\(\Leftrightarrow x^2\left(x-4\right)\left(x+4\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x^2=0\\x-4=0\\x+4=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=4\\x=-4\end{matrix}\right.\)
Vậy: \(x\in\left\{0;4;-4\right\}\)
b) Ta có: \(9x^2+6x+1=0\)
\(\Leftrightarrow\left(3x\right)^2+2\cdot3x\cdot1+1^2=0\)
\(\Leftrightarrow\left(3x+1\right)^2=0\)
\(\Leftrightarrow3x+1=0\)
\(\Leftrightarrow3x=-1\)
hay \(x=-\frac{1}{3}\)
Vậy: \(x=-\frac{1}{3}\)
c) Ta có: \(x^2-6x=16\)
\(\Leftrightarrow x^2-6x-16=0\)
\(\Leftrightarrow x^2-8x+2x-16=0\)
\(\Leftrightarrow x\left(x-8\right)+2\left(x-8\right)=0\)
\(\Leftrightarrow\left(x-8\right)\left(x+2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-8=0\\x+2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=8\\x=-2\end{matrix}\right.\)
Vậy: \(x\in\left\{8;-2\right\}\)
d) Ta có: \(9x^2+6x=80\)
\(\Leftrightarrow9x^2+6x-80=0\)
\(\Leftrightarrow9x^2+6x+1-81=0\)
\(\Leftrightarrow\left(3x+1\right)^2-9^2=0\)
\(\Leftrightarrow\left(3x+1-9\right)\left(3x+1+9\right)=0\)
\(\Leftrightarrow\left(3x-8\right)\left(3x+10\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}3x-8=0\\3x+10=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}3x=8\\3x=-10\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\frac{8}{3}\\x=-\frac{10}{3}\end{matrix}\right.\)
Vậy: \(x\in\left\{\frac{8}{3};-\frac{10}{3}\right\}\)
e) Ta có: \(25\left(2x-1\right)^2-9\left(x+1\right)^2=0\)
\(\Leftrightarrow\left(10x-5\right)^2-\left(3x+3\right)^2=0\)
\(\Leftrightarrow\left(10x-5-3x-3\right)\left(10x-5+3x+3\right)=0\)
\(\Leftrightarrow\left(7x-8\right)\left(13x-2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}7x-8=0\\13x-2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}7x=8\\13x=2\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\frac{8}{7}\\x=\frac{2}{13}\end{matrix}\right.\)
Vậy: \(x\in\left\{\frac{8}{7};\frac{2}{13}\right\}\)