Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(5.2^{x+1}.2^{-2}-2^x=384\Leftrightarrow2^x\left(5.2^{-2}.2-1\right)=384\)\(\Leftrightarrow2^x.1,5=384\Leftrightarrow2^x=384:1,5=256=2^8\)
\(\Rightarrow x=8\)
b) \(3^{x+2}.5^y=45^x\Leftrightarrow3^{x+2}.5^y=3^{2x}.5^x\Leftrightarrow\frac{3^{2x}}{3^{x+2}}=\frac{5^y}{5^x}\)\(\Leftrightarrow3^{2x-x+2}=5^{y-x}\Leftrightarrow3^{x+2}=5^{y-x}\)
\(\Rightarrow x+2=y-x=0\Rightarrow x=y=-2\)
a,\(8< 2^x\le2^9.2^{-5}\)
\(2^3< 2^x\le2^4\)
\(\Rightarrow x=4\)
b, \(27< 81^3.3^x< 243\)
\(3^3< 3^{12-x}< 3^5\)
\(\Rightarrow3< 12-x< 5\)
12-x=4
x=8
c,\(\left(\frac{2}{5}\right)^x>\left(\frac{2}{5}\right)^3.\left(\frac{2}{5}\right)^2\)
\(\left(\frac{2}{5}\right)^x>\left(\frac{2}{5}\right)^5\)
\(\Rightarrow x>5\)
x=6;7;8........
a) \(8< 2^x\le2^9.2^{-5}\)
\(\Leftrightarrow2^3< x\le2^{9-5}\)
\(\Leftrightarrow2^3< 2^x\le2^4\)
\(\Leftrightarrow3< x\le4\Leftrightarrow x=4\)
b) \(27< 81^3:3^x< 243\)
\(\Leftrightarrow3^2< \left(3^4\right)^3:3^x< 3^5\)
\(\Leftrightarrow3^2< 3^{12}:3^x< 3^5\)
\(\Leftrightarrow3^2< 3^{12-x}< 3^5\)
\(\Leftrightarrow2< 12-x< 5\)
\(\Leftrightarrow\hept{\begin{cases}x=8\\x=9\end{cases}}\)
1.
a) \(x\in\left\{4;5;6;7;8;9;10;11;12;13\right\}\)
b) x=0
d) \(x=\frac{-1}{35}\) hoặc \(x=\frac{-13}{35}\)
e) \(x=\frac{2}{3}\)
Bài 1:
Ta có: \(x+\left(-\frac{31}{12}\right)^2=\left(\frac{49}{12}\right)^2-x\)
\(\Leftrightarrow2x=\frac{1440}{144}=10\)
\(\Rightarrow x=5\)
Khi đó: \(y^2=\left(\frac{49}{12}\right)^2-5=\frac{1681}{144}\)
=> \(\hept{\begin{cases}y=\frac{41}{12}\\y=-\frac{41}{12}\end{cases}}\)
Bài 1 :
a) x < 0
b) x > 0
c) <=> 3 + |3x - 1| = 5
<=> |3x - 1| = 5 - 3 = 2
<=> 3x - 1 = 2 hoặc -3x + 1 = 2
<=> 3 x = 3 hoặc -3x = 1
<=> x = 1 hoặc x = -1/3
Bài 2 :
a) 27 = 33 < 3n < 243 = 35
<=> 3 < n < 5
Vì n thuộc N* nên n thuộc {4; 5}
b) 32 = 25 < 2n < 128 = 27
<=> 5 < n < 7. Vì n thuộc N* nên n = 6
c) 125 = 5 . 25 = 5 . 52 < 5.5n < 5 . 125 = 5 . 53
<=> 2 < n < 3. Vì n thuộc N* nên n = 3
a) \(32< 2^x< 128\)
=> \(2^5< 2^x< 2^7\)
=> x = 6
b) \(2^{x-1}+4\cdot2^x=9\cdot2^5\)
=> \(2^{x-1}+2^2\cdot2^x=9\cdot2^5\)
=> \(2^{x-1}+2^{2+x}=9\cdot2^5\)
=> 9.2x-1 = 9.25
=> 2x-1 = \(\frac{9\cdot2^5}{9}=2^5\)
=> x - 1 = 5 => x = 6
c) \(9\cdot27\le3^x\le243\)
=> \(243\le3^x\le243\)
=> x = 5
d) Giống câu b)
e) \(3^{x-1}+5\cdot3^{x-2}=216\)
=> 8.3x-2 = 216
=> 3x-2 = 27
=> 3x-2 = 33
=> x - 2 = 3 => x = 5
f) 27x-3 = 9x+3
=> 27x-3 = 9x+3
=> (33)x-3 = (32)x+3
=> 33x-9 = 32x + 6
=> không thỏa mãn x vì x là phân số mà theo đề bài là số nguyên
g) x2019 = x => x2019 - x = 0 => x(x2018 - 1) = 0 => x = 0 hoặc x = 1
a)
\(2^5< 2^x< 2^7\)
\(5< x< 7\)
\(x=6\)
b)
\(2^{x-1}+2^2\cdot2^x=9\cdot2^5\)
\(2^{x-1}+2^{2+x}=9\cdot2^5\)
\(2^{x-1}\left(1+2^3\right)=9\cdot2^5\)
\(2^{x-1}\cdot9=9\cdot2^5\)
\(2^{x-1}=2^5\)
\(x-1=5\)
\(x=6\)
`#3107.101107`
a)
\(27< 3^x< 243\\ \Rightarrow3^3< 3^x< 3^5\\ \Rightarrow3< x< 5\\ \Rightarrow x=4\)
Vậy, `x = 4`
b)
\(2^x+2^{x+1}+2^{x+2}=56?\\ \Rightarrow2^x+2^x\cdot2+2^x\cdot4=56\\ \Rightarrow2^x\cdot\left(1+2+4\right)=56\\ \Rightarrow2^x\cdot7=56\\ \Rightarrow2^x=8\\ \Rightarrow2^x=2^3\\ \Rightarrow x=3\)
Vậy, `x = 3`
c)
\(3^x+3^{x+2}=810\\ \Rightarrow3^x+3^x\cdot9=810\\ \Rightarrow3^x\cdot\left(1+9\right)=810\\ \Rightarrow3^x\cdot10=810\\ \Rightarrow3^x=81\\ \Rightarrow3^x=3^4\\ \Rightarrow x=4\)
Vậy, `x = 4.`
a) \(27< 3^x< 243\)
\(\Rightarrow3^3< 3^x< 3^5\)
\(\Rightarrow3< x< 5\)
c) \(3^x+3^{x+2}=810\)
\(\Rightarrow3^x\left(1+3^2\right)=810\)
\(\Rightarrow3^x.10=810\)
\(\Rightarrow3^x=810:10\)
\(\Rightarrow3^x=81\)
\(\Rightarrow3^x=3^4\)
\(\Rightarrow x=4\)