Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
/x+1/>= 0
/x+3/>=0
=>/x+1/+/x+3/>=0
=>3x>=0
=> x>=0
=> /x+1/=x+1 ;/x+3/=x+3=> x+1+x+3=3x=>2x+4=3x =>x=4
a: \(\Leftrightarrow\left\{{}\begin{matrix}3x-2>-4\\3x-2< 4\end{matrix}\right.\Leftrightarrow-\dfrac{2}{3}< x< 2\)
c: \(\Leftrightarrow\left[{}\begin{matrix}3x-1>5\\3x-1< -5\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x>2\\x< -\dfrac{4}{3}\end{matrix}\right.\)
d: \(\Leftrightarrow\left[{}\begin{matrix}3x+1>x-2\\3x+1< -x+2\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}2x>-3\\4x< 1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x>-\dfrac{3}{2}\\x< \dfrac{1}{4}\end{matrix}\right.\)
\(\text{Giải}\)
\(2x=3y\Leftrightarrow8x=12y;4y=5z\Leftrightarrow12y=15z\Leftrightarrow8x=12y=15z\)
\(\Leftrightarrow x=\frac{2}{3}y=\frac{8}{15}z\Rightarrow x+y+z=\frac{11}{5}x=11\Leftrightarrow x=5\Rightarrow y=\frac{10}{3};z=\frac{8}{3}\)
\(\text{Vậy: x=5;y=10 phần 3;z=8 phần 3}\)
\(\text{Ta có: trị tuyệt đối của 1 số luôn dương từ đó suy ra 4x dương suy ra x dương}\)
\(\Rightarrow3x+1+2+3=4x\Rightarrow x=1+2+3=6\)
\(\text{Vậy: x=6}\)
Áp dụng bđt \(\left|a\right|-\left|b\right|\le\left|a-b\right|\) ta có:
\(A=\left|x+5\right|-\left|x-2\right|\le\left|x+5-x+2\right|=7\)
Dấu "=" xảy ra khi:\(\left\{{}\begin{matrix}x+5\ge0\\x-2\ge0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\ge-5\\x\ge2\end{matrix}\right.\)
Vậy \(x\ge2\) thì \(max_A=7\)
theo bài ra ta có : I x + 5 I > hoặc = x + 5 với mọi x
I x - 2 I > hoặc = x-2 với mọi x
xuy ra A = Ix+5I - Ix-2I > hoặc = x + 5 - x - 2 = 3
xuy ra A > hoặc = 3
vậy giá trị lớn nhất của A là 3
P/S : làm hơi hâm tý thông cảm nhoa