a. !10x+7! <37    ...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 7 2018

a, \(\left|x+2\right|-\left|x+7\right|=0\Rightarrow\left|x+2\right|=\left|x+7\right|\Rightarrow\orbr{\begin{cases}x+2=x+7\\x+2=-x-7\end{cases}\Rightarrow\orbr{\begin{cases}0=5\left(loại\right)\\2x=-9\end{cases}\Rightarrow}x=\frac{-9}{2}}\)

b, - Nếu \(2x-1\ge0\Rightarrow x\ge\frac{1}{2}\), ta có: 2x - 1 = 2x - 1 => 2x = 2x (thỏa mãn với mọi x)

- Nếu 2x - 1 < 0 => \(x< \frac{1}{2}\), ta có: 2x - 1 = 1 - 2x => 4x = 2 => x = \(\frac{1}{2}\) (không thỏa mãn điều kiện)

Vậy \(x\ge\frac{1}{2}\)

c,d tương tự b

e, tương tự a

22 tháng 4 2019

b 1 là b + 1, c 2 là c + 2, a b c là a + b + c  nhé

22 tháng 4 2019

bạn viết lại đề bại giùm đc ko 

\(0\le a\le b;1\le c...abc=1\)Số 2 là gì vậy

Bài 1:

a: \(\Leftrightarrow\left\{{}\begin{matrix}\left(3-2x\right)^2=\left(x-2\right)^2\\x< =\dfrac{3}{2}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\left(2x-3-x+2\right)\left(2x-3+x-2\right)=0\\x< =\dfrac{3}{2}\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\left(x-1\right)\left(3x-5\right)=0\\x< =\dfrac{3}{2}\end{matrix}\right.\Leftrightarrow x=1\)

b: \(\left|x\right|< 3\)

nên -3<x<3

c: \(\left|x\right|\ge5\)

nên \(\left[{}\begin{matrix}x\ge5\\x\le-5\end{matrix}\right.\)

Bài 2: 

\(\Leftrightarrow\left\{{}\begin{matrix}x+1=0\\y-7=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-1\\y=7\end{matrix}\right.\)

24 tháng 7 2017

Tìm x , biết :

1 , | x + 2 | - | x + 1 | = 0

2 , | x + 1 | + | x + 4 | = 3x

3 , | 2x - 1 | \(\le\)5

5 tháng 8 2018

a)\(A=12-\left|x-3\right|-\left|y+7\right|\)

\(-\left|x-3\right|\le0;-\left|y+7\right|\le0\)

\(\Rightarrow A\le12-0-0=12\)

Vậy Max A = 12 <=> x = 3 ; y = -7

b)\(B=-\left(x-2018\right)^6-1\)

\(-\left(x-2018\right)^6\le0\)

\(B\le0-1=-1\)

Vậy Max B = -1 <=> x = 2018

5 tháng 8 2018

a)  \(A=12-\left|x-3\right|-\left|y+7\right|\)

Nhận thấy: \(\left|x-3\right|\ge0;\)\(\left|y+7\right|\ge0\)

suy ra:  \(A=12-\left|x-3\right|-\left|y+7\right|\le12\)

Vậy MIN A = 12

Dấu "=" xảy ra <=> \(x=3;y=-7\)

b) \(B=-\left(x-2018\right)^6-1\)

Nhận thấy:  \(\left(x-2018\right)^6\ge0\)

suy ra:  \(B=-\left(x-2018\right)^2-1\le-1\)

Vậy MIN B = -1

Dấu "=" xảy ra  <=>   \(x=2018\)

c) \(C=\frac{20}{7}-\left|x+8\right|-\left(3y+7\right)^{2016}\)

Nhận thấy:  \(\left|x+8\right|\ge0\)    \(\left(3y+7\right)^{2016}\ge0\)

suy ra:  \(C=\frac{20}{7}-\left|x+8\right|-\left(3y+7\right)^{2016}\le\frac{20}{7}\)

Vậy MIN  C = 20/7

Dấu "=" xảy ra <=>  \(x=-8;y=-\frac{7}{3}\)

23 tháng 9 2019

                                                             Bài giải

a, \(\left|x-0,6\right|< \frac{1}{2}\)

* Nếu \(x-0,6< 0\) thì :

\(-\left(x-0,6\right)< \frac{1}{2}\)

\(-x+\frac{3}{5}< \frac{1}{2}\)

\(-x< \frac{1}{2}-\frac{3}{5}\)

\(-x< -\frac{1}{10}\)

\(x< \frac{1}{10}\)

23 tháng 9 2019

                                                           Bài giải

a, \(\left|x-0,6\right|< \frac{1}{2}\)

* Nếu \(x-0,6< 0\) thì :

\(-\left(x-0,6\right)< \frac{1}{2}\)

\(-x+\frac{3}{5}< \frac{1}{2}\)

\(-x< \frac{1}{2}-\frac{3}{5}\)

\(-x< -\frac{1}{10}\)

\(x< \frac{1}{10}\)