Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài làm:
Ta có: \(\left(4x-1\right)^2-\left(4x+1\right)\left(x-2\right)=12\)
\(\Leftrightarrow16x^2-8x+1-4x^2+7x+2-12=0\)
\(\Leftrightarrow12x^2-x-9=0\)
\(\Leftrightarrow12\left(x^2-\frac{1}{12}x+\frac{1}{576}\right)-\frac{433}{48}=0\)
\(\Leftrightarrow\left[2\sqrt{3}\left(x-\frac{1}{24}\right)\right]^2-\left(\frac{\sqrt{433}}{\sqrt{48}}\right)^2=0\)
\(\Leftrightarrow\left[2\sqrt{3}\left(x-\frac{1}{24}\right)-\sqrt{\frac{433}{48}}\right]\left[2\sqrt{3}\left(x-\frac{1}{24}\right)+\sqrt{\frac{433}{48}}\right]=0\)
\(\Leftrightarrow\orbr{\begin{cases}2\sqrt{3}\left(x-\frac{1}{24}\right)=\sqrt{\frac{433}{48}}\\2\sqrt{3}\left(x-\frac{1}{24}\right)=-\sqrt{\frac{433}{48}}\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x-\frac{1}{24}=\frac{\sqrt{433}}{24}\\x-\frac{1}{24}=\frac{-\sqrt{433}}{24}\end{cases}}\Rightarrow\orbr{\begin{cases}x=\frac{\sqrt{433}+1}{24}\\x=\frac{1-\sqrt{433}}{24}\end{cases}}\)
Vậy tập nghiệm của PT \(S=\left\{\frac{1-\sqrt{433}}{24};\frac{\sqrt{433}+1}{24}\right\}\)
\(\left(4x-1\right)^2-\left(4x+1\right)\left(x-2\right)=12\)
\(\Leftrightarrow\left(4x-1\right)\left(4x-1-x+2\right)=12\)
\(\Leftrightarrow\left(4x-1\right)\left(3x+1\right)=12\)
Rồi bạn tự tính tiếp nhớ :3
Học tốt
\(\left(4x-1\right)^2-\left(4x+1\right)\left(x-2\right)=12\)
\(\Leftrightarrow16x^2-8x+1-4x^2+8x-x+2=12\)
\(\Leftrightarrow12x^2-x-9=0\)( vô nghiệm )
a.\(\left(4x-1\right)-\left(4x+1\right).\left(x-2\right)=12\)
\(\Leftrightarrow4x-1-\left(4x^2-7x-2\right)-12=0\)
\(\Leftrightarrow4x-1-4x^2+7x+2-12=0\)
\(\Leftrightarrow-4x^2+11x-11=0\)
\(\Rightarrow4x^2-11x+11=0\)
\(\Leftrightarrow\left(2x\right)^2-2.2x.\frac{11}{4}+\frac{11^2}{4^2}-\frac{11^2}{4^2}+11=0\)
\(\Leftrightarrow\left(2x-\frac{11}{4}\right)^2+\frac{55}{16}=0\)( VÔ LÝ )
VẬY KHÔNG CÓ GIÁ TRỊ NÀO CỦA x THỎA MÃN PT ĐÃ CHO
b. \(\left(2x-3\right).\left(2x+1\right)-\left(2x-2\right)^2=15\)
\(\Leftrightarrow4x^2-4x-3-4x^2+8x-4-15=0\)
\(\Leftrightarrow4x-22=0\)\
\(\Leftrightarrow x=\frac{11}{2}\)
VẬY PT CÓ NGHIỆM x= 11/2
a) \(\left(4x-1\right)-\left(4x+1\right)\left(x-2\right)=12\)
\(\Leftrightarrow4x-1-\left(4x^2-7x-2\right)=12\)
\(\Leftrightarrow4x-1-4x^2+7x+2=12\)
\(\Leftrightarrow4x^2-11x+11=0\)( Pt vô nghiệm )
b) \(\left(2x-3\right)\left(2x+1\right)-\left(2x-2\right)^2=15\)
\(\Leftrightarrow\left(4x^2-4x-3\right)-\left(4x^2-8x+4\right)=15\)
\(\Leftrightarrow4x=22\)
\(\Leftrightarrow x=\frac{11}{2}\)
(4x - 1) - (4x + 1)(x - 2) = 12
=> 4x - 1 - 4x2 - 7x - 2 = 12
=> (4x - 7x) + (- 1 - 2) - 4x2 = 12
=> -3x - 3 - 4x2 = 12
=> -3x - 4x2 = 15
=> không tồn tại x
b. (2x - 3)(2x + 1) - (2x - 2)(2x - 2) = 15
=> 2x(2x + 1) - 3(2x + 1) - 2x(2x - 2) + 2(2x - 2) = 15
=> 4x2 + 2x - 6x - 3 - 4x2 + 4x - 4x - 4 = 15
=> (4x2 - 4x2) + (2x - 6x + 4x - 4x) + (-3 - 4) = 15
=> -4x - 7 = 15
=> -4x = 22
=> x = \(-\frac{11}{2}\)
a, \(\left(4x-1\right)-\left(4x+1\right)\left(x-2\right)=12\)
\(\Leftrightarrow4x-1-4x^2+8x-x+2=12\)
\(\Leftrightarrow11x+1-4x^2=12\)
\(\Leftrightarrow11x-11-4x^2=0\)( vô nghiệm )
b, \(\left(2x-3\right)\left(2x+1\right)-\left(2x-2\right)^2=15\)
\(\Leftrightarrow4x^2+2x-6x-3-4x^2+8x-4=15\)
\(\Leftrightarrow4x-7=15\Leftrightarrow4x=22\Leftrightarrow x=\frac{11}{2}\)
a) \(x\left(x-2\right)-7x+14=0\)
\(\Leftrightarrow x\left(x-2\right)-7\left(x-2\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left(x-7\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=2\\x=7\end{cases}}\)
b) \(x^2\left(x-3\right)+12-4x=0\)
\(\Leftrightarrow x^2\left(x-3\right)-4\left(x-3\right)=0\)
\(\Leftrightarrow\left(x^2-4\right)\left(x-3\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=3\\x^2=4\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=3\\x=\pm2\end{cases}}\)
c) \(x^2+12x-13=0\)
\(\Leftrightarrow\left(x^2-x\right)+\left(13x-13\right)=0\)
\(\Leftrightarrow x\left(x-1\right)+13\left(x-1\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(x+13\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=1\\x=-13\end{cases}}\)
d) \(4x^2-4x=8\)
\(\Leftrightarrow x^2-x-2=0\)
\(\Leftrightarrow\left(x+1\right)\left(x-2\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=-1\\x=2\end{cases}}\)
e) \(x^2-6x=1\)
\(\Leftrightarrow\left(x-3\right)^2=10\)
\(\Leftrightarrow\orbr{\begin{cases}x-3=\sqrt{10}\\x-3=-\sqrt{10}\end{cases}}\Rightarrow\orbr{\begin{cases}x=3+\sqrt{10}\\x=3-\sqrt{10}\end{cases}}\)
a) x( x - 2 ) - 7x + 14 = 0
<=> x( x - 2 ) - 7( x - 2 ) = 0
<=> ( x - 2 )( x - 7 ) = 0
<=> \(\orbr{\begin{cases}x-2=0\\x-7=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=2\\x=7\end{cases}}\)
b) x2( x - 3 ) + 12 - 4x = 0
<=> x2( x - 3 ) - 4( x - 3 ) = 0
<=> ( x - 3 )( x2 - 4 ) = 0
<=> \(\orbr{\begin{cases}x-3=0\\x^2-4=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=3\\x=\pm2\end{cases}}\)
c) x2 + 12x - 13 = 0
<=> x2 - x + 13x - 13 = 0
<=> x( x - 1 ) + 13( x - 1 ) = 0
<=> ( x - 1 )( x + 13 ) = 0
<=> \(\orbr{\begin{cases}x-1=0\\x+13=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=1\\x=-13\end{cases}}\)
d) 4x2 - 4x = 8
<=> 4( x2 - x ) = 8
<=> x2 - x = 2
<=> x2 - x - 2 = 0
<=> x2 + x - 2x - 2 = 0
<=> x( x + 1 ) - 2( x + 1 ) = 0
<=> ( x + 1 )( x - 2 ) = 0
<=> \(\orbr{\begin{cases}x+1=0\\x-2=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=-1\\x=2\end{cases}}\)
e) x2 - 6x = 1
<=> x2 - 6x + 9 = 1 + 9
<=> ( x - 3 )2 = 10
<=> ( x - 3 )2 = ( ±√10 )2
<=> \(\orbr{\begin{cases}x-3=\sqrt{10}\\x-3=-\sqrt{10}\end{cases}\Leftrightarrow}\orbr{\begin{cases}x=3+\sqrt{10}\\x=3-\sqrt{10}\end{cases}}\)
a) biểu thức \(=\left(x^2+x\right)+4\left(x^2+x\right)-12\)
Đặt \(t=x^2+x\) (*)
biểu thức trở thành: \(t^2+4t-12=\left(t-2\right)\left(t+6\right)\) (**)
thay ngược lại (*) vào (**), ta được:
\(\left(x^2+x-2\right)\left(x^2+x+6\right)\)
Kl: \(\left(x^2+x\right)^2+4x^2+4x-12=\left(x^2+x-2\right)\left(x^2+x+6\right)\)
b) Đặt \(t=x^2+x+1\) (*)
biểu thức trở thành: \(t\left(t+1\right)-12=t^2+t-12=\left(t-3\right)\left(t+4\right)\)(**)
Thay ngược lại (*) vào (**), ta được:
--dễ rồi, tự làm nhé--
c) bậc 4 mà nghiệm xấu quá, chạy liệt máy rồi, cho rút lui câu này nha ^^!
bn ơi câu a chưa phân tik xong
(x2 + x - 2)
= (x2 - x + 2x - 2)
rồi phân tik tiếp nhé tại nãy đánh mỏi tay quá
pt <=> \(16x^2-8x+1-\left(4x^2-7x-2\right)=12\)
<=> \(12x^2-x+3=12\)
<=> \(12x^2-x-9=0\)
=> Bạn bấm máy tính tìm nốt x nha
( 4x - 1 )2 - ( 4x + 1 )( x - 2 ) = 12
<=> 16x2 - 8x + 1 - ( 4x2 - 7x - 2 ) = 12
<=> 16x2 - 8x + 1 - 4x2 + 7x + 2 = 12
<=> 12x2 - x + 3 = 12
<=> 12x2 - x + 3 - 12 = 0
<=> 12x2 - x - 9 = 0
\(\Delta=b^2-4ac=\left(-1\right)^2-4\cdot12\cdot\left(-9\right)=1+432=433\)( lại không muốn xài Delta đâu nhưng bí quá ;-; )
\(\Delta>0\)nên phương trình đã cho có hai nghiệm phân biệt :
\(\hept{\begin{cases}x_1=\frac{-b+\sqrt{\Delta}}{2a}=\frac{1+\sqrt{433}}{2\cdot12}=\frac{1+\sqrt{433}}{24}\\x_2=\frac{-b-\sqrt{\Delta}}{2a}=\frac{1-\sqrt{433}}{2\cdot12}=\frac{1-\sqrt{433}}{24}\end{cases}}\)