\(4\left(x-1\right)^2-9\left(x+2\right)^2=0\)

b) 

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 6 2016

a) \(\Leftrightarrow\left(2x-2\right)^2-\left(3x+6\right)^2=0\)

    \(\Leftrightarrow\left(\left(2x-2\right)+\left(3x+6\right)\right)\left(\left(2x-2\right)-\left(3x+6\right)\right)=0\)

     \(\Leftrightarrow\left(5x+4\right)\left(-x-8\right)=0\)

    \(\Leftrightarrow\orbr{\begin{cases}5x+4=0\\-x-8=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=-\frac{4}{5}\\x=-8\end{cases}}}\)

b) \(\Leftrightarrow4\left(x^2+2x+1\right)+\left(4x^2-4x+1\right)-8\left(x^2-1\right)=11\)

  \(\Leftrightarrow4x^2+8x+4+4x^2-4x+1-8x^2+8=11\)

  \(\Leftrightarrow4x+13=11\)

 \(\Leftrightarrow x=-\frac{1}{2}\)

30 tháng 6 2016

a) \(4\left(x-1\right)^2-9\left(x+2\right)^2=0\)

\(\Leftrightarrow\left[2\left(x-1\right)\right]^2-\left[3\left(x+2\right)\right]^2=0\)

\(\Leftrightarrow\left(2x-2\right)^2-\left(3x+6\right)^2=0\)

\(\Leftrightarrow\left(2x-2+3x+6\right)\left(2x-2-3x-6\right)=0\)

\(\Leftrightarrow\left(5x+4\right)\left(-x-8\right)=0\)

\(\Leftrightarrow\hept{\begin{cases}5x+4=0\\-x-8=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=-\frac{4}{5}\\x=-8\end{cases}}}\)

b) \(4\left(x+1\right)^2+\left(2x-1\right)^2-8\left(x+1\right)\left(x-1\right)=11\)

\(\Leftrightarrow4\left(x^2+2x+1\right)+\left(4x^2-4x+1\right)-8\left(x^2-1\right)=11\)

\(\Leftrightarrow4x^2+8x+4+4x^2-4x+1-8x^2+8=11\)

\(\Leftrightarrow4x+13=11\)

\(\Leftrightarrow4x=-2\)

\(\Leftrightarrow x=-\frac{2}{4}=-\frac{1}{2}\)

(Nhớ k cho mình với nhé!)

NV
26 tháng 2 2020

1. \(x^2\left(x+1\right)+x+1=0\)

\(\Leftrightarrow\left(x+1\right)\left(x^2+1\right)=0\)

\(\Leftrightarrow x+1=0\Rightarrow x=-1\)

2. \(\left(x-2\right)\left(6x+2\right)+\left(x-2\right)^2=0\)

\(\Leftrightarrow\left(x-2\right)\left(6x+2+x-2\right)=0\)

\(\Leftrightarrow\left(x-2\right).7x=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x-2=0\\7x=0\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x=2\\x=0\end{matrix}\right.\)

NV
26 tháng 2 2020

3.

\(x^2-5x+6=0\)

\(\Leftrightarrow x^2-2x-3x+6=0\)

\(\Leftrightarrow x\left(x-2\right)-3\left(x-2\right)=0\)

\(\Leftrightarrow\left(x-3\right)\left(x-2\right)=0\Rightarrow\left[{}\begin{matrix}x=2\\x=3\end{matrix}\right.\)

4.

\(x^2-x-6=0\)

\(\Leftrightarrow x^2+2x-3x-6=0\)

\(\Leftrightarrow x\left(x+2\right)-3\left(x+2\right)=0\)

\(\Leftrightarrow\left(x-3\right)\left(x+2\right)=0\Rightarrow\left[{}\begin{matrix}x=3\\x=-2\end{matrix}\right.\)

19 tháng 7 2018

a) \(25x^2-9=0\)

\(\Leftrightarrow\left(5x\right)^2-3^2=0\)

\(\Leftrightarrow\left(5x+3\right)\left(5x-3\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}5x-3=0\\5x+3=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=\frac{3}{5}\\x=-\frac{3}{5}\end{cases}}\)

Vậy \(S=\left\{\frac{3}{5};\frac{-3}{5}\right\}\)

b) \(\left(x+4\right)^2-\left(x+1\right)\left(x-1\right)=16\)

\(\Leftrightarrow\left(x^2+8x+16\right)-\left(x^2-1\right)=16\)

\(\Leftrightarrow x^2+8x+16-x^2+1=16\)

\(\Leftrightarrow8x+17=16\)

\(\Leftrightarrow8x=-1\)

\(\Leftrightarrow x=-\frac{1}{8}\)

Vậy.........

c)\(\left(2x-1\right)^2+\left(x+3\right)^2-5\left(x+7\right)\left(x-7\right)=0\)

\(\Leftrightarrow\left(4x^2-4x+1\right)+\left(x^2+6x+9\right)-5\left(x^2-49\right)=0\)

\(\Leftrightarrow4x^2-4x+1+x^2+6x+9-5x^2+245=0\)

\(\Leftrightarrow2x=-255\)

\(\Leftrightarrow x=-127,5\)

Vậy.............

có j sai xót mong m.n bỏ qua☺

19 tháng 7 2018

a) \(25x^2-9=0\)                      

<=> \(\left(5x\right)^2=9\)

<=> \(\left(5x\right)^2=3^2\)

<=> \(5x=3\)

<=> \(x=\frac{3}{5}\)

b) \(\left(x+4\right)^2-\left(x-1\right)\left(x+1\right)=16\)

<=> \(x^2+2.x.4+4^2-\left(x^2-1^2\right)=16\)

<=> \(x^2+8x+16-x^2+1=16\)

<=> \(\left(x^2-x^2\right)+8x+\left(16+1\right)=16\)

<=> \(8x+17=16\)

<=> \(8x=-1\)

<=> \(x=\frac{-1}{8}\)

c) \(\left(2x-1\right)^2+\left(x+3\right)^2-5\left(x+7\right)\left(x-7\right)=0\)

<=> \(\left(2x\right)^2-2.2x.1+1^2+x^2+2.x.3+3^2-5\left(x^2-7^2\right)=0\)

<=> \(4x^2-4x+1+x^2+6x+9-5x^2+5.7^2=0\)

<=> \(\left(4x^2+x^2-5x^2\right)-\left(4x-6x\right)+\left(1+9+5.7^2\right)=0\)

<=> \(2x+245=0\)

<=> \(2x=-245\)

<=> \(x=\frac{-245}{2}\)

14 tháng 7 2018

\(b,\left(x+2\right)\left(x^2-2x+4\right)-x\left(x^2+2\right)=15\)

\(\Leftrightarrow x^3+8-x^3-2x=15\)

\(\Leftrightarrow-2x=15-8=7\)

\(\Leftrightarrow x=\frac{-7}{2}\)

Vậy \(x=\frac{-7}{2}\)

b) Ta có: \(\left(x-2\right)\left(x^2-2x+4\right)\left(x+2\right)\left(x^2+2x+4\right)-x^6+2x=1\)

\(\Leftrightarrow\left(x^3-8\right)\left(x^3+8\right)-x^6+2x-1=0\)

\(\Leftrightarrow x^6-64-x^6+2x-1=0\)

\(\Leftrightarrow2x-65=0\)

\(\Leftrightarrow2x=65\)

hay \(x=\frac{65}{2}\)

Vậy: \(x=\frac{65}{2}\)

c) Ta có: \(\left(x-3\right)\left(x^2+3x+9\right)+x\left(x+2\right)\left(2-x\right)=1\)

\(\Leftrightarrow x^3-27-x\left(x+2\right)\left(x-2\right)-1=0\)

\(\Leftrightarrow x^3-27-x\left(x^2-4\right)-1=0\)

\(\Leftrightarrow x^3-27-x^3+4x-1=0\)

\(\Leftrightarrow4x-28=0\)

\(\Leftrightarrow4x=28\)

hay x=7

Vậy: x=7

26 tháng 8 2018

a) \(\left(x+2\right)^2-9=0\)

\(\Rightarrow\left(x+2\right)^2=9\)

\(\Rightarrow\left(x+2\right)^2=3^2\)

\(\Rightarrow x+2=3\)

\(\Rightarrow x=3-2=1\)

26 tháng 8 2018

a) ( x + 2 )2 = 9

=> ( x + 2 ) 2 = 9

=> ( x + 2 )2 = 32

=> x + 2 = + 3

=> \(\orbr{\begin{cases}x+2=-3\\x+2=3\end{cases}}\)

=> \(\orbr{\begin{cases}x=-1\\x=5\end{cases}}\)

Vậy x = -1; 5

b) ( x + 2 )2 - x2 + 4 = 0

=> ( x + 2 )2 - ( x2 - 4 ) = 0

=> ( x + 2 )2 - ( x + 2 ) ( x  - 2 ) = 0

=> ( x + 2 ) ( x + 2 -  x + 2 ) = 0

=> ( x + 2 ) . 4 = 0

=> x + 2 = 0 

=> x = - 2

Vậy x = - 2 

c)  5 ( 2x - 3 )2 - 5 ( x + 1 )2 - 15( x + 4 ) ( x - 4 )  = - 10

=> 5 ( 4x2 - 12x + 9 ) - 5 ( x2 + 2x + 1 ) - 15 ( x2 - 42 ) = - 10

=> 20x2 - 60x + 45 - 5x2 - 10x - 5 - 15x2 + 240 = -10

=> - 70x + 280 = - 10

=> - 70x = - 290

=> x = \(\frac{29}{7}\)

Vậy x = \(\frac{29}{7}\)

d)  x ( x + 5 ) ( x - 5 ) - ( x + 2 ) ( x2 - 2x + 4 ) = 3

=> x ( x2 - 25 ) - ( x3 - 8 ) = 3

=> x3 - 25x - x3 + 8 = 3

=> - 25x + 8 = 3

=> - 25x = -5

=> x = \(\frac{1}{5}\)

Vậy x = \(\frac{1}{5}\)