Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1:
a) \(9\left(4x+3\right)^2=16\left(3x-5\right)^2\)
\(114x^2+216x+81=114x^2-480x+400\)
\(144x^2+216x=144x^2-480x+400-81\)
\(114x^2+216=114x^2-480x+319\)
\(696x=319\)
\(\Rightarrow x=\frac{11}{24}\)
b) \(\left(x^3-x^2\right)^2-4x^2+8x-4=0\)
\(\left(x-1\right)^2\left(x^2+2\right)\left(x+\sqrt{2}\right)\left(x-\sqrt{2}\right)=0\)
\(\Rightarrow x=1\)
c) \(x^5+x^4+x^3+x^2+x+1=0\)
\(\left(x+1\right)\left(x^2+x+1\right)\left(x^2-x+1\right)=0\)
\(\Rightarrow x=-1\)
Bài 2:
a) \(5x^3-7x^2-15x+21=0\)
\(\left(5x-7\right)\left(x+\sqrt{3}\right)\left(x-\sqrt{3}\right)=0\)
\(\Rightarrow x=\frac{7}{5}\)
b) \(\left(x-3\right)^2=4x^2-20x+25\)
\(x^2-6x+9-25=4x^2-20x+25\)
\(x^2-6x+9=4x^2-20x+25-25\)
\(x^2-6x-16=4x^2-20x\)
\(x^2+14x-16=4x^2-4x^2\)
\(-3x^2+14x-16=0\)
\(\Rightarrow\orbr{\begin{cases}x=2\\x=\frac{8}{3}\end{cases}}\)
c) \(\left(x-1\right)^2-5=\left(x+2\right)\left(x-2\right)-x\left(x-1\right)\)
\(x^2-2x=x-4\)
\(x^2-2x=x-4+4\)
\(x^2-2x=x-x\)
\(x^2-3x=0\)
\(\Rightarrow\orbr{\begin{cases}x=0\\x=3\end{cases}}\)
d) \(\left(2x-3\right)^3-\left(2x+3\right)\left(4x^2-1\right)=-24\)
\(-48x^2+56x-24=-24\)
\(-48x^2+56x=-24+24\)
\(-48x^2+56=0\)
\(\Rightarrow\orbr{\begin{cases}x=0\\x=\frac{7}{6}\end{cases}}\)
mình ko chắc
Bài 1:
\(\left(2x-5\right)^2-4\left(2x-5\right)+4=0\)
\(\left(2x-5\right)^2-2\left(2x-5\right)\left(2\right)+2^2=0\)
\(\left(2x-5-2\right)^2=0\)
\(2x-5-2=0\)
\(2x-7=0\)
\(2x=0+7\)
\(2x=7\)
\(x=\frac{7}{2}\)
Bài 3:
\(\left(4x+3\right)\left(4x-3\right)-\left(4x-5\right)^2=46\)
\(\left(4x\right)^2-3^2-16x^2+40x-25=46\)
\(4^2x^2-3^2-16x^2+40x-25=46\)
\(16x^2-9-16x^2+40x-25=46\)
\(-34+40x=46\)
\(40x-34=46\)
\(40x=46+34\)
\(40x=80\)
\(x=2\)
bài 2:
a) \(81^2=\left(80+1\right)^2=80^2+2.80+1=6400+160+1=6561\)
b) \(99^2=\left(100-1\right)^2=100^2-2.100+1=10000-200+1=8801\)
8x2+30x+7=0
8x2+16x+14x+7=0
8x(x+2) +7(x+2)=0
(8x+7)(x+2)=0
=>\(\orbr{\begin{cases}8x+7=0\\x+2=0\end{cases}\Rightarrow\orbr{\begin{cases}x=-\frac{7}{8}\\x=-2\end{cases}}}\)
Ta có: \(\left(2x-1\right)^2+\left(x+2\right)^2-\left(4x-2\right)\left(x+2\right)=4\)
\(\Leftrightarrow\left(2x-1\right)^2+\left(x+2\right)^2-2\left(2x-1\right)\left(x+2\right)=4\)
\(\Leftrightarrow\left(2x-1-x-2\right)^2=\left(\pm2\right)^2\)
\(\Leftrightarrow x-3=\pm2\)
\(\Leftrightarrow\orbr{\begin{cases}x-3=2\\x-3=-2\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=5\\x=1\end{cases}}\)
Vậy \(S=\left\{1,5\right\}\)
( 2x - 1 )2 + ( x + 2 )2 - ( 4x - 2 )( x + 2 ) = 4
<=> 4x2 - 4x + 1 + x2 + 4x + 4 - ( 4x2 + 6x - 4 ) = 4
<=> 5x2 + 5 - 4x2 - 6x + 4 = 4
<=> x2 - 6x + 9 = 4
<=> x2 - 6x + 9 - 4 = 0
<=> x2 - 6x + 5 = 0
<=> x2 - x - 5x + 5 = 0
<=> x( x - 1 ) - 5( x - 1 ) = 0
<=> ( x - 1 )( x - 5 ) = 0
<=> \(\orbr{\begin{cases}x-1=0\\x-5=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=1\\x=5\end{cases}}\)
#)Giải :
Bài 1 :
a) \(9\left(4x+3\right)^2=16\left(3x-5\right)^2\)
\(\Leftrightarrow144x^2+216x+81=144x^2-480x+400\)
\(\Leftrightarrow144x^2+216=144x^2-480x+319\)
\(\Leftrightarrow696x=319\)
\(\Leftrightarrow x=\frac{11}{24}\)
b) \(\left(x^3-x^2\right)^2-4x^2+8x-4=0\)
\(\Leftrightarrow\left(x-1\right)^2\left(x^2+2\right)\left(x+\sqrt{2}\right)\left(x-\sqrt{2}\right)=0\)
\(\Leftrightarrow x=1\)
c) \(x^5+x^4+x^3+x^2+x+1=0\)
\(\Leftrightarrow\left(x+1\right)\left(x^2+x+1\right)\left(x^2-x+1\right)=0\)
\(\Leftrightarrow x=-1\)
a) 9(4x + 3)2 = 16(3x - 5)2
=> [3(4x + 3)]2 - [4(3x - 5)]2 = 0
=> (12x + 9)2 - (12x - 20)2 = 0
=> (12x + 9 - 12x + 20)(12x + 9 + 12x - 20) = 0
=> 29.(24x - 11) = 0
=> 2x - 11 = 0
=> 2x = 11
=> x = 11 : 2 = 11/2
b) (x3 - x2)2 - 4x2 + 8x - 4 = 0
=> (x3 - x2)2 - (2x - 2)2 = 0
=> (x3 - x2 - 2x + 2)(x3 - x2 + 2x - 2) = 0
=> [x2(x - 1) - 2(x - 1)][x2(x - 1) + 2(x - 1)] = 0
=> (x2 - 2)(x - 1)(x2 + 2)(x - 1) = 0
=> (x2 - 2)(x2 + 2)(x - 1)2 = 0
=> x2 - 2 = 0
hoặc : x2 + 2 = 0
hoặc : (x - 1)2 = 0
=> x2 = 2
hoặc : x2 = -2 (vl)
hoặc : x - 1 = 0
=> \(\orbr{\begin{cases}x=\sqrt{2}\\x=-\sqrt{2}\end{cases}}\)
hoặc : x = 1
Vậy ...
c) x5 + x4 + x3 + x2 + x + 1 = 0
=> x4(x +1) + x2(x + 1) + (x + 1) = 0
=> (x4 + x2 + 1)(x + 1) = 0
=> \(\orbr{\begin{cases}x^4+x^2+1=0\\x+1=0\end{cases}}\)
=> \(\orbr{\begin{cases}x^4+x^2=-1\left(vl\right)\\x=-1\end{cases}}\) (vì x4 \(\ge\)0 \(\forall\)x; x2 \(\ge\)0 \(\forall\)x => x4 + x2 \(\ge\)0 \(\forall\)x)
=> x = -1
a) \(4x\left(x-5\right)-\left(x-1\right)\left(4x-3\right)=5\)
\(\Leftrightarrow4x^2-20x-4x^2+7x-3=5\)
\(\Leftrightarrow-13x-3=5\)
\(\Leftrightarrow x=\frac{-8}{13}\)
b) \(\left(x-5\right)\left(x-1\right)=\left(x-1\right)\left(x-2\right)\)
\(\Leftrightarrow x^2-6x+5=x^2-3x+2\)
\(\Leftrightarrow-3x+3=0\)
\(\Leftrightarrow x=1\)
Vậy x=1
\(\left(4x-1\right)^2=2^2\)
\(\Rightarrow\orbr{\begin{cases}4x-1=2\\4x-1=-2\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}x=\frac{3}{4}\\x=-\frac{1}{4}\end{cases}}\)
Bài làm
( 4x - 1 )2 = 4
=> ( 4x - 1 )2 = 22
=> 4x - 1 = 2
=> 4x = 3
x = 3/4
Vậy x = 3/4
# Học tốt #