Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(32^{-x}\times16^x=1024\\ 16^{-x}\times2^{-x}\times16^x=2^{10}\\ \left(16^{-x}\times16^x\right)\times2^{-x}=2^{10}\\ 2^{-x}=2^{10}\\ \Rightarrow-x=10\\ x=-10\) \(\left(\dfrac{4}{5}\right)^{2x+7}=\dfrac{625}{256}\\ \left(\dfrac{4}{5}\right)^{2x+7}=\left(\dfrac{4}{5}\right)^{-4}\\ \Rightarrow2x+7=4\\ 2x=-3\\ x=-1,5\)
a.(2x +1). (2x+1)=1
Mà chỉ có 1.1=1
Vậy 2x + 1=1
2x=1-1
2x=0
Suy ra: x= 0
Hoàng Khánh Thi thiếu nha.
a) (2x+1)2 = \(\left(\pm1\right)^2\)
=> 2x + 1 = 1 hoặc 2x + 1 = -1
=> 2x = 0 hoặc 2x = -2
=> x = 0 hoặc x = -1.
( 5/4 ) ^2x+ 7 = ( 5/4 )^4
=> 2x + 7 = 4
=> 2x = -3
x = -3/2
xem lại 5/4 hay 4/5
Để sai rồi :
\(\left(\frac{5}{4}\right)^{2x+7}=\frac{625}{256}\)
\(\Leftrightarrow\left(\frac{5}{4}\right)^{2x+7}=\left(\frac{5}{4}\right)^4\)
<=> 2x + 7 = 4
<=> 2x = -3
<=> x = -3/2
Vậy x = -3/2
( 2x + 3 ) 3 = -125
( 2x + 3 ) 3 = ( -5 ) 3
=> 2x + 3 = -5
2 x = -8
x = -4
( x + 1 / 4 ) 4 = 625 / 256
( x + 1 / 4 ) 4 = ( 5 / 4 ) 4
=> x + 1 / 4 = 5/4
x = 4 / 4
x = 1
1: Tìm x
a) Ta có: \(\left(2x-1\right)^3=-27\)
\(\Leftrightarrow2x-1=-3\)
\(\Leftrightarrow2x=-3+1=-2\)
hay x=-1
Vậy: x=-1
b) Ta có: \(\left(2x-3\right)^4=625\)
\(\Leftrightarrow\left[{}\begin{matrix}2x-3=-5\\2x-3=5\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}2x=-5+3=-2\\2x=5+3=8\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-1\\x=4\end{matrix}\right.\)
Vậy: \(x\in\left\{-1;4\right\}\)
c) Ta có: \(\left(x-2\right)^5=\left(x-2\right)^7\)
\(\Leftrightarrow\left(x-2\right)^5-\left(x-2\right)^7=0\)
\(\Leftrightarrow\left(x-2\right)^5\left[1-\left(x-2\right)^2\right]=0\)
\(\Leftrightarrow\left(x-2\right)^5\cdot\left[1-\left(x-2\right)\right]\cdot\left[1+\left(x-2\right)\right]=0\)
\(\Leftrightarrow\left(x-2\right)^5\cdot\left(1-x+2\right)\cdot\left(1+x-2\right)=0\)
\(\Leftrightarrow\left(x-2\right)^5\cdot\left(-x+3\right)\left(x-1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}\left(x-2\right)^5=0\\-x+3=0\\x-1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x-2=0\\-x=-3\\x=1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=2\\x=3\\x=1\end{matrix}\right.\)
Vậy: \(x\in\left\{1;2;3\right\}\)
d) Ta có: \(5^{x+2}+5^{x+3}=750\)
\(\Leftrightarrow5^{x+2}\cdot1+5^{x+2}\cdot5=750\)
\(\Leftrightarrow5^{x+2}\left(1+5\right)=750\)
\(\Leftrightarrow5^{x+2}\cdot6=750\)
\(\Leftrightarrow5^{x+2}=125\)
\(\Leftrightarrow x+2=3\)
hay x=1
Vậy: x=1