Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
2(3x-1)-3(x-5)+(3x-6)=19
<=>6x-2-3x+15+3x-6=19
<=>6x+7=19
<=>6x=12
<=>x=2
2(3x-1) - 3(x-5) + (3x-6)=19
6x - 2 - 3x + 15 +3x - 6 = 19
6 x + 7 =19
6 x = 12
x = 2
VẬy x =2 là nghiệm của pt
d. (x - 3)(x2 + 3x + 9) + x(x + 2)(2 - x) = 1
<=> x3 - 9 + (x2 + 2x)(2 - x) = 1
<=> x3 - 9 + 2x2 - x3 + 4x - 2x2 = 1
<=> 4x = 10
<=> x = \(\dfrac{10}{4}=\dfrac{5}{2}\)
d)(x - 3)(x^2 + 3x + 9) + x(x + 2)(2 - x) = 1
\(<=> x^3-27-x(x^2-4)=1\)
\(<=> x^3-27-x^3-4x=1<=>-4x=28<=> x=-7\)
=> ptrình có tập nghiệm S={-7}
e) (x + 1)^3 - (x - 1)^3 - 6(x - 1)^2 = -19
\(<=> x^3+3x^2+3x+1-(x^3-3x^2+3x-1)-6(x^2-2x+1)+19=0\)
\(<=>x^3+3x^2+3x+1-x^3+3x^2-3x+1-6x^2+12x-6+19=0\)
\(<=>12x=15<=>x=12/15 \)
=> ptrình có tập nghiệm S={12/15}
3x.(3x-6)-3x.(6x-19)=26
=>3x.3x+3x.(-6)+(-3x).6x+(-3x).(-19)=26
=>9x^2-18x-18x^2+57x=26
=>-9x^2+39x=26
\(\frac{x+2}{10}+\frac{x+2}{13}+\frac{x+2}{16}+\frac{x+2}{19}=0\)
\(\Leftrightarrow\left(x+2\right)\left(\frac{1}{10}+\frac{1}{13}+\frac{1}{16}+\frac{1}{19}\right)=0\)
Mà \(\frac{1}{10}+\frac{1}{13}+\frac{1}{16}+\frac{1}{19}\ne0\)
\(\Rightarrow x+2=0\Rightarrow x=-2\)
Vậy \(x=-2\)
a, Ta có: x2 ≥ 0 => x2 + 3x ≥ 0
=> x2 + 3x + 19 ≥ 19
Dấu "=" xảy ra <=> x2 + 3x = 0
<=> x(x + 3) = 0
<=> x = 0 hoặc x = -3
a, \(A=x^2+3x+19\)
\(A=x^2+\frac{3}{2}\cdot2x+\frac{9}{4}+\frac{67}{4}\)
\(A=\left(x+\frac{3}{2}\right)^2+\frac{67}{4}\)
\(\left(x+\frac{3}{2}\right)^2\ge0\Rightarrow\left(x+\frac{3}{2}\right)^2+\frac{67}{4}\ge\frac{67}{4}\)
\(\Rightarrow A\ge\frac{67}{4}\)
dấu "=" xảy ra khi :
\(\left(x+\frac{3}{2}\right)^2=0\Rightarrow x+\frac{3}{2}=0\Rightarrow x=-\frac{3}{2}\)
a) Ta có: \(x\left(x-1\right)-x^2+2x=5\)
\(\Leftrightarrow x^2-x-x^2+2x=5\)
hay x=5
b) Ta có: \(2x^2-2x=\left(x-1\right)^2\)
\(\Leftrightarrow2x\left(x-1\right)-\left(x-1\right)^2=0\)
\(\Leftrightarrow\left(x-1\right)\left(2x-x+1\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(x+1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=1\\x=-1\end{matrix}\right.\)
c) Ta có: \(\left(x+3\right)\cdot\left(x^2-3x+9\right)-x\left(x-2\right)^2=19\)
\(\Leftrightarrow x^3+27-x\left(x^2-4x+4\right)-19=0\)
\(\Leftrightarrow x^3+8-x^3+4x^2-4x=0\)
\(\Leftrightarrow4x^2-4x+8=0\)(Vô lý)
2. Tìm x:
( x - 3 )2 - x + 3 = 0
=> x2 - 6x + 9 - x + 3 = 0
=> x2 - 7x + 12 = 0
=> ( x2 - 3x ) + ( 4x - 12 ) = 0
=> x.(x - 3) + 4.(x - 3) = 0
=> ( x - 3 ).( x + 4 ) = 0
=> x - 3 = 0 => x = 3
x + 4 = 0 => x = -4
Trl:
1.
a. \(75^2+150\text{.}25+25^2\)
\(=75^2+2\text{.}75\text{.}25+25^2\)
\(=\left(75+25\right)^2\)
\(=100^2\)
\(=10000\)
b. \(2019^2-2019.19-19^2-19.1981\)
(Đề bài có sai ko vậy???)~ hoặc lak do mk ngu quá k bt lm
2. \(\left(\text{x}-3\right)^2-\text{x}+3=0\)
\(\text{x}^2-6\text{x}+9-\text{x}+3=0\)
\(\text{x}^2-7\text{x}+12=0\)
\(\text{x}^2-3\text{x}-4\text{x}+12=0\)
\(\text{x}\left(\text{x}-3\right)-4\left(\text{x}-3\right)=0\)
\(\left(\text{x}-3\right)\left(\text{x}-4\right)=0\)
\(\orbr{\begin{cases}\text{x}-3=0\\\text{x}-4=0\end{cases}\Leftrightarrow\orbr{\begin{cases}\text{x}=3\\\text{x}=4\end{cases}}}\)
Vậy ....
#HuyềnAnh#
Ta có: \(x^3+3x^2+3x+6=\left(x^3+3x^2+3x+1\right)+5=\left(x+1\right)^3+5\) (1)
Thay x=19 vào (1) \(\Rightarrow x^3+3x^2+3x+6=\left(19+1\right)^3+5=20^3+5=8005\)
Vậy \(x^3+3x^2+3x+6=8005\) với x=19
= 3x ( x - 19 ) + 2 ( x - 19 )
= ( 3x + 2 )( x - 19
3x(x-19)-2(19-x)
=3x.(x-19)2-2
mk chỉ làm đc thế thôi