Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, \(2\left(x+5\right)-x^2-5x=0\)
\(\Rightarrow2\left(x+5\right)-x\left(x+5\right)=0\)
\(\Rightarrow\left(x+5\right)\left(2-x\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x+5=0\\2-x=0\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}x=5\\x=2\end{cases}}\)
a) \(\Leftrightarrow x^2-3x+x-3=0\)
\(\Leftrightarrow x\left(x-3\right)+\left(x-3\right)=0\)
\(\Leftrightarrow\left(x-3\right)\left(x+1\right)=0\)
\(\Leftrightarrow\)\(\left[\begin{array}{nghiempt}x-3=0\\x+1=0\end{array}\right.\)\(\Leftrightarrow\)\(\left[\begin{array}{nghiempt}x=3\\x=-1\end{array}\right.\)
a.
\(x^2-2x-3=0\)
\(x^2-2\times x+1^2-1^2-3=0\)
\(\left(x-1\right)^2-4=0\)
\(\left(x-1\right)^2=4\)
\(\left(x-1\right)^2=\left(\pm2\right)^2\)
\(x-1=\pm2\)
TH1:
x - 1 = 2
x = 2 + 1
x = 3
TH2:
x - 1 = -2
x = -2 + 1
x = -1
Vậy x = 3 hoặc x = -1
b.
\(2x^2+5x-3=0\)
\(2\times\left(x^2+2\times x\times\frac{5}{4}+\left(\frac{5}{4}\right)^2-\left(\frac{5}{4}\right)^2-\frac{3}{2}\right)=0\)
\(\left(x+\frac{5}{4}\right)^2-\frac{49}{16}=0\)
\(\left(x+\frac{5}{4}\right)^2=\frac{49}{16}\)
\(\left(x+\frac{5}{4}\right)^2=\left(\pm\frac{7}{4}\right)^2\)
\(x+\frac{5}{4}=\pm\frac{7}{4}\)
TH1:
x + 5/4 = 7/4
x = 7/4 - 5/4
x = 2/4
x = 1/2
TH2:
x + 5/4 = -7/4
x = -7/4 - 5/4
x = -12/4
x = -3
Vậy x = -3 hoặc x = 1/2
Chúc bạn học tốt ^^
\(5x\left(x-3\right)\left(x+3\right)-\left(2x-3\right)^2-5\left(x+2\right)^2\)
\(+34x\left(x+2\right)=1\)
\(\Leftrightarrow5x\left(x^2-9\right)-\left(4x^2-12x+9\right)-5\left(x^2+4x+4\right)\)
\(+34x^2+68x=0\)
\(\Leftrightarrow5x^3-45x-4x^2+12x-9-5x^2-20x-20\)
\(+34x^2+68x=0\)
\(\Leftrightarrow5x^3+25x^2+15x-29=0\)
Giải nghiệm ta được ba nghiệm sau:
\(x_1\approx0,776\)
\(x_2\approx-1,96\)
\(x_3\approx-3,82\)
2x3 + 5x2 + x - 2 = 0
<=> 2x3 + 2x2 + 3x2 + 3x - 2x - 2 = 0
<=> 2x2(x + 1) + 3x(x + 1) - 2(x + 1) = 0
<=> (x + 1)(2x2 + 3x - 2) = 0
<=> (x + 1)(2x2 + 4x - x - 2) = 0
<=> (x + 1)[2x(x + 2) -(x + 2)] = 0
<=> (x + 1)(x + 2)(2x - 1) = 0
<=> x + 1 = 0 hay x + 2 = 0 hay 2x - 1 = 0
<=> x = -1 x = -2 2x = 1
<=> x = 1/2
<=> (x4 - 4x2) + (2x3 -16) - (5x - 10) = 0
<=> x2.(x2 - 4) + 2.(x3 - 8) - 5.(x - 2) = 0
<=> x2.(x -2).(x+2) +2.(x-2).(x2 + 2x+4) -5(x -2) = 0
<=> (x -2).[x2(x+2) + 2(x2 + 2x+4) -5] = 0
<=> (x -2).(x3 + 4x2 + 4x + 3) = 0
<=> x = 2 hoặc x3 + 4x2 + 4x + 3 = 0
+) x3 + 4x2 + 4x + 3 = 0 <=> (x3 + 3x2) + (x2 + 3x) + (x+3) = 0 <=> (x+3).(x2 + x + 1) = 0
<=> x + 1 = 0 hoặc x2 + x + 1 = 0 (Vô nghiệm vì x2 + x + 1 = ( (x + 1/2)2 + 3/4 > 0 với mọi x )
Vậy x = 2 hoặc x = -3
gợi ý
\(2x^3+8x^2-3x^2-12x=0\)
\(\left(2x^3+8x^2\right)-\left(3x^2-12x\right)=0\)
\(2x^3+5x^2-12x=0\)
\(\Leftrightarrow\left(2x^3-3x^2\right)+\left(8x^2-12x\right)=0\)
\(\Leftrightarrow2x^2\left(x-\frac{3}{2}\right)+8x\left(x-\frac{3}{2}\right)=0\)
\(\Leftrightarrow\left(2x^2+8x\right)\left(x-\frac{3}{2}\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}2x^2+8x=0\\x-\frac{3}{2}=0\end{cases}}\)
tự túc :)
b) \(ĐKXĐ:x\ne0\)
\(\left(5x^4-3x^3\right):2x^3=\frac{1}{2}\)
\(\Leftrightarrow x^3.\left(5x-2\right):2x^3=\frac{1}{2}\)
\(\Leftrightarrow\frac{5x-2}{2}=\frac{1}{2}\)\(\Leftrightarrow5x-2=1\)
\(\Leftrightarrow5x=3\)\(\Leftrightarrow x=\frac{3}{5}\)( thỏa mãn ĐKXĐ )
Vậy \(x=\frac{3}{5}\)
c) \(ĐKXĐ:x\ne2\)
\(\frac{x^4-2x^2-8}{x-2}=0\)\(\Rightarrow x^4-2x^2-8=0\)
\(\Leftrightarrow\left(x^4-4x^2\right)+\left(2x^2-8\right)=0\)
\(\Leftrightarrow x^2.\left(x^2-4\right)+2\left(x^2-4\right)=0\)
\(\Leftrightarrow\left(x^2-4\right)\left(x^2+2\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left(x+2\right)\left(x^2+2\right)=0\)
Vì \(x^2\ge0\forall x\)\(\Rightarrow x^2+2\ge2\)
\(\Rightarrow\left(x-2\right)\left(x+2\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x-2=0\\x+2=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=2\\x=-2\end{cases}}\)
So sánh với ĐKXĐ ta thấy: \(x=-2\)thỏa mãn
Vậy \(x=-2\)
a) \(x^2=2x+1\)
\(\Leftrightarrow x^2-2x-1=0\)
\(\Leftrightarrow x^2-2x+1-2=0\)
\(\Leftrightarrow\left(x-1\right)^2-2=0\)
\(\Leftrightarrow\left(x-1-\sqrt{2}\right)\left(x-1+\sqrt{2}\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=1+\sqrt{2}\\x=1-\sqrt{2}\end{cases}}\)
b) ĐKXĐ : x khác 0
\(\frac{5x^4-3x^3}{2x^3}=\frac{1}{2}\)
\(\Leftrightarrow\frac{x^3\left(5x-3\right)}{2x^3}=\frac{1}{2}\)
\(\Leftrightarrow\frac{5x-3}{2}=\frac{1}{2}\)
\(\Leftrightarrow5x-3=1\Leftrightarrow x=\frac{4}{5}\)( thỏa mãn ĐKXĐ )
c) ĐKXĐ : x khác 2
\(\frac{x^4-2x^2-8}{x-2}=0\)
\(\Leftrightarrow x^4-2x^2-8=0\)
\(\Leftrightarrow x^4-4x^2+2x^2-8=0\)
\(\Leftrightarrow x^2\left(x^2-4\right)+2\left(x^2-4\right)=0\)
\(\Leftrightarrow\left(x+2\right)\left(x-2\right)\left(x^2+2\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=-2\left(tm\right)\\x=2\left(ktm\right)\end{cases}}\)
\(2x^2+5x=3\)
\(2x^2+5x-3=0\)
\(2x^2-x+6x-3=0\)
\(\left(2x^2-x\right)+\left(6x-3\right)=0\)
\(x\left(2x-1\right)+3\left(2x-1\right)=0\)
\(\left(2x-1\right)\left(x+3\right)=0\)
\(2x-1=0\) hoặc \(x+3=0\)
*) \(2x-1=0\)
\(2x=1\)
\(x=\dfrac{1}{2}\)
*) \(x+3=0\)
\(x=0-3\)
\(x=-3\)
Vậy \(x=-3;x=\dfrac{1}{2}\)
\(2x^2+5x=3\)
\(\text{ }\Leftrightarrow2x^2+5x-3=0\)
\(\Leftrightarrow2x^2+6x-x-3=0\)
\(\Leftrightarrow2x\left(x+3\right)-\left(x+3\right)=0\)
\(\Leftrightarrow\left(x+3\right)\left(2x-1\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x+3=0\\2x-1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-3\\x=\dfrac{1}{2}\end{matrix}\right.\)