K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
30 tháng 4 2023

Lời giải:

$2^x+2^{x+1}+2^{x+2}+...+2^{x+2019}=2^{x+2023}-8$

$2^x(1+2+2^2+...+2^{2019})=2^{x+2023}-8$

Xét:

$A=1+2+2^2+...+2^{2019}$

$2A=2+2^2+2^3+...+2^{2020}$

$\Rightarrow A=2A-A=2^{2020}-1$

Khi đó:

$2^x.A=2^{x+2023}-8$

$2^x(2^{2020}-1)=2^{x+2023}-2^3$

$2^x(2^{2023}-2^{2020}+1)-2^3=0$

$2^x(2^{2020}.7+1)=2^3$

$x$ ra số sẽ khá xấu. Bạn coi lại.

22 tháng 4 2020

(2x+1)(y-3)=12

Vì x;y là số tự nhiên => 2x+1;y-3 là số tự nhiên

                                 => 2x+1;y-3 E Ư(12)

Ta có bảng:

2x+11123426
y-31214362
x011/2 (loại)13/2(loại)1/2(loại)5/2(loại)
y1547695

Vậy cặp số tự nhiên (x;y) cần tìm là: (0;15) ; (1;7)

22 tháng 4 2020

(2x + 1)(y - 3) = 12

=> 2x + 1;y - 3 thuộc Ư(12)

vì x là stn => 2x + 1 là stn, ta có bảng

2x+11122634
y-31216243
x0loạiloạiloại1loại
y15   7 
5 tháng 2 2023

x= 2023

y=5

1 tháng 3 2019

\(2^x+2^{x+1}+2^{x+2}+...+2^{x+2015}=2^{2019}-8\)

\(\Leftrightarrow2^x\left(1+2+2^2+...+2^{2015}\right)=2^{2019}-2^3\)

\(\Leftrightarrow2^x\left(2^{2016}-1\right)=2^3\left(2^{2016}-1\right)\)

\(\Leftrightarrow2^x=2^3\)

\(\Leftrightarrow x=3\)

Vậy x = 3

7 tháng 4 2019

2 x + 2x+1+ 2 x+2+.......+ 2x+2015=22019-8

=2x.( 1+2+22+23+.....+ 2 2015)=22019- 23

đặt A= 1+2+22+...+22015

=>2A=2+22+23+..+22016

=>2A -A = ( 2+ 22+23+......+22016)-(1+2+22+........+22015)=A=22016-1

\(\Rightarrow\)2x.(22016-1)=23.(22016-1)

=>x=3

26 tháng 2 2020

Ta có : \(2^x+2^{x+1}+2^{x+2}+...+2^{x+2015}=2^{2019}-8\)

\(\Leftrightarrow2^x\left(1+2+2^2+...+2^{2015}\right)=2^{2019}-8\) (1)

Đặt : \(A=1+2+2^2+...+2^{2015}\)

\(\Rightarrow2A=2+2^2+2^3+...+2^{2016}\)

\(\Rightarrow2A-A=\left(2+2^2+2^3+...+2^{2016}\right)-\left(1+2+2^2+...+2^{2015}\right)\)

\(\Rightarrow A=2^{2016}-1\)

Khi đó (1) trở thành :

\(2^x\left(2^{2016}-1\right)=2^{2019}-2^3\)

\(\Leftrightarrow2^x\left(2^{2016}-1\right)=2^3\left(2^{2016}-1\right)\)

\(\Leftrightarrow2^x=2^3\left(2^{2016}-1\ne0\right)\)

\(\Leftrightarrow x=3\)

Vậy : \(x=3\)

5 tháng 10 2021

vậy x=3 nhé

23 tháng 9 2023

\(\dfrac{1}{1\cdot2}+\dfrac{1}{2\cdot3}+...+\dfrac{1}{x\left(x+1\right)}=\dfrac{2022}{2023}\)
\(\Rightarrow1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{x}-\dfrac{1}{x+1}=\dfrac{2022}{2023}\)
\(\Rightarrow1-\dfrac{1}{x+1}=\dfrac{2022}{2023}\)
\(\Rightarrow\dfrac{1}{x+1}=1-\dfrac{2022}{2023}\)
\(\Rightarrow\dfrac{1}{x+1}=\dfrac{1}{2023}\)
\(\Rightarrow x+1=2023\)
\(\Rightarrow x=2022\)
Vậy x = 2022
#kễnh

23 tháng 9 2023

\(\dfrac{1}{1.2}+\dfrac{1}{2.3}+...+\dfrac{1}{x.\left(x+1\right)}\)

\(\dfrac{2-1}{1.2}+\dfrac{3-2}{2.3}+...+\dfrac{x+1-x}{x.\left(x+1\right)}\)

\(\dfrac{2}{1.2}-\dfrac{1}{1.2}+\dfrac{3}{2.3}-\dfrac{2}{2.3}+...+\dfrac{x+1}{x.\left(x+1\right)}-\dfrac{x}{x.\left(x+1\right)}\)

\(\dfrac{1}{1}-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{x}-\dfrac{1}{x+1}\)

\(1-\dfrac{1}{x+1}\) =\(\dfrac{2022}{2023}\)

\(\dfrac{2023}{2023}-\dfrac{1}{x+1}=\dfrac{2022}{2023}\)

⇒ \(x+1=2023\)

\(x=2023-1=2022\)