Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
* Nếu \(x< 1\)
=> 1 - x + 3 - x = 2
<=> 4 - 2x = 2
<=> x = 1 (không TM)
* Nếu \(1\le x< 3\)
=> x - 1 + 3 - x = 2
<=> 2 = 2 (đúng)
=> phương trình luôn có nghiệm.
* Nếu \(x\ge3\)
=> x - 1 + x - 3 = 2
<=> 2x - 4 = 2
<=> x = 3 (TM)
Vậy với \(1\le x< 3\)thì phương trình luôn có nghiệm
với \(x\ge3\)thì phương trình có nghiệm x = 3.
Ta có \(|x-1|+|x-3|=2\)\(\Rightarrow|x-1|+|3-x|=2\)
Áp dụng bất đẳng thức \(|a|+|b|\ge|a+b|\)
Dấu bằng xảy ra khi và chỉ khi \(ab\ge0\)
Do đó \(|x-1|+|3-x|\ge|x-1+3-x|=|2|=2\)
Dấu bằng xảy ra khi và chỉ khi \(\left(x-1\right)\left(3-x\right)\ge0\)
\(\cdot\orbr{\begin{cases}\hept{\begin{cases}x-1\ge0\\3-x\ge0\end{cases}}\\\hept{\begin{cases}x-1\le0\\3-x\le0\end{cases}}\end{cases}}\)\(\Rightarrow\hept{\begin{cases}x-1\ge0\\3-x\ge0\end{cases}}\)hoặc \(\hept{\begin{cases}x-1\le0\\3-x\le0\end{cases}}\)
\(\cdot\hept{\begin{cases}x-1\ge0\\3-x\ge0\end{cases}}\Rightarrow\hept{\begin{cases}x\ge1\\x\le3\end{cases}}\Rightarrow1\le x\le3\)
\(\cdot\hept{\begin{cases}x-1\le0\\3-x\le0\end{cases}}\Rightarrow\hept{\begin{cases}x\le1\\x\ge3\end{cases}}\)( vô lý )
Vậy \(1\le x\le3\)
PS : vì đề bài không yêu cầu tìm \(x\in Z\) nên mình để đáp số như vậy
còn nếu yêu cầu bạn phải tìm được 3 giá trị của x là 1;2;3
đầu tiên ta lập bẳng xét đấu ra ngoài nháp với công thức trái khác phải cùng
Xét x<1, x<3
Đổi dấu giá trị tuyệt đối thành dấu ngoặc tính, đồng thời đổi dấu
( -x+1) + ( -x + 3) = 2x -1
-x +1- x +3 = 2x -1
-x-x-2x = -1-1-3
-4x =-5
=> x =4/5( THỎA MẴN)
Chú ý phần này ta tìm x ra xong phải xem , xem x có thỏa mẵn với việc mà ta xét x không
VD trong phần này ta xét x<1 , X<3
ta tìm ra x= 4/5, thế nên 4/5<1; 4/5 <3
nên x thỏa mẵn
Xét 1<x =<3
( x-1) + ( -x -3 ) = 2 x -1
bỏ ngoặc rồi tính
Xét x>=1 ,x>= 3
=> ( x-1) + (x-3) = 2x-1
Bỏ NGoặc rồi tính
kết luận Vậy x thuộc ....
Với x>=100
=> |x-1|+|x-2|+....+|x-100|=x-1+x-2+....+x-100=100x-5050
Với x<100 => |x-1|+|x-2|+|x-3|+.....+|x-100|=-x+1+(-x)+2+....+(-x)+100=-100x+5050
|x - 1,3| + |2x - 1| = 0
Có |x - 1,3| \(\ge\)0
|2x - 1| \(\ge\)0
=> Để |x - 1,3| + |2x - 1| = 0
=> |x - 1,3| = 0 và |2x - 1| = 0
=> x - 1,3 = 0 và 2x - 1 = 0
=> x = 1,3 và 2x = 1
=> x = 1,3 và x = 0,5 (vô lí vì x không thể cùng lúc nhận 2 giá trị)
=> Không có giá trị của x thỏa mãn đề bài
\(2.|x+1|=6\)
\(\Leftrightarrow|x+1|=3\)
\(\Leftrightarrow\orbr{\begin{cases}x+1=3\\x+1=-3\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=2\\x=-4\end{cases}}\)
Vậy \(x\in\left\{2;-4\right\}\)
\(2\left|x+1\right|=6\)
\(\Leftrightarrow\left|x+1\right|=6:2\)
\(\Leftrightarrow\left|x+1\right|=\left(\pm3\right)\)
\(\Leftrightarrow\orbr{\begin{cases}x+1=3\\x+1=-3\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=2\\x=-4\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}x=2\\x=-4\end{cases}}\)