Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
mk muốn xem bài của mk đúng hay sai thôi !
chứ làm thì mk làm xong rồi !
\(bai1:a,\frac{3}{7}\cdot\frac{-5}{9}+\frac{4}{9}\cdot\frac{3}{7}-\frac{3}{7}\cdot\frac{8}{9}\)
\(< =>\frac{-15}{63}+\frac{12}{63}-\frac{24}{63}\)
\(< =>\frac{-15+12-24}{63}\)
\(< =>\frac{-3}{7}\)
\(b,1\frac{13}{15}\cdot0,75-\left(\frac{11}{20}+25\%\right):\frac{7}{5}\)
\(< =>\frac{28}{15}\cdot\frac{3}{4}-\left(\frac{11}{20}+\frac{1}{4}\right):\frac{7}{5}\)
\(< =>\frac{7}{5}-\frac{4}{5}:\frac{7}{5}\)
\(< =>\frac{7}{5}-\frac{4}{7}\)
\(< =>\frac{29}{35}\)
\(bai2:\)
\(a,\frac{-3}{4}\cdot x-\frac{4}{10}=\frac{1}{5}\)
\(< =>\frac{-3}{4}\cdot x=\frac{1}{5}+\frac{4}{10}\)
\(< =>\frac{-3}{4}\cdot x=\frac{3}{5}\)
\(< =>x=\frac{3}{5}:\frac{-3}{4}\)
\(< =>x=\frac{-4}{5}\)
\(b,3\left(x-\frac{1}{3}\right)+\frac{1}{3}x=\frac{1}{19}:\frac{12}{19}\)
\(< =>3\left(x-\frac{1}{3}\right)+\frac{1}{3}x=\frac{1}{12}\)
\(< =>\left[3\left(x-\frac{1}{3}\right)\right]=\frac{1}{12}< =>x-\frac{1}{3}=\frac{1}{12}:3=\frac{1}{36}=>x=\frac{1}{36}+\frac{1}{3}=>x=\frac{13}{36}\)
\(< =>\left[\frac{1}{3}\cdot x\right]=\frac{1}{12}< =>x=\frac{1}{12}:\frac{1}{3}=>x=\frac{1}{4}\)
Bài 1:
a)\(\frac{3}{7}.\frac{-5}{9}+\frac{4}{9}.\frac{3}{7}-\frac{3}{7}.\frac{8}{9}\) b,\(1\frac{13}{15}.0,75-\left(\frac{11}{20}+25\%\right):\frac{7}{5}\)
\(=\frac{3}{7}.(\frac{-5}{9}+\frac{4}{9}-\frac{8}{9})\) \(=\frac{28}{15}.\frac{3}{4}-\left(\frac{11}{20}+\frac{5}{20}\right):\frac{7}{5}\)
\(=\frac{3}{7}.\frac{-9}{9}\) \(=\frac{7}{5}-\frac{4}{5}:\frac{7}{5}\)
\(=\frac{-3}{7}\) \(=\frac{7}{5}-\frac{4}{7}\)
\(=\frac{29}{35}\)
Bài 2:
a)\(\frac{-3}{4}x-\frac{4}{10}=\frac{1}{5}\) b,\(3\left(x-\frac{1}{3}\right)+\frac{1}{3}x=\frac{1}{19}:\frac{12}{19}\)
\(\frac{-3}{4}x\) \(=\frac{1}{5}+\frac{4}{10}\) \(3\left(x-\frac{1}{3}\right)+\frac{1}{3}x=\frac{1}{12}\)
\(\frac{-3}{4}x\) \(=\frac{3}{5}\) \(\left(x.3-\frac{1}{3}.3\right)+\frac{1}{3}x=\frac{1}{12}\)
\(x\) \(=\frac{3}{5}:\frac{-3}{4}\) \(\left(x.3-1\right)+\frac{1}{3}x=\frac{1}{12}\)
\(x\) \(=\frac{4}{-5}\) \(x.\left(3+\frac{1}{3}\right)-1=\frac{1}{12}\)
\(x.\left(3+\frac{1}{3}\right)=\frac{1}{12}+1\)
\(x.\frac{10}{3}=\frac{13}{12}\)
\(x=\frac{13}{12}:\frac{10}{3}\)
\(x=\frac{13}{40}\)
\(a)x+30\%x=-1,31\)
\(\Leftrightarrow x+\frac{3x}{10}=-1,31\)
\(\Leftrightarrow10x+3x=-13,1\)
\(\Leftrightarrow13x=-13,1\Leftrightarrow x=-\frac{131}{130}\)
\(b)\left(x-\frac{1}{2}\right):\frac{1}{3}+\frac{5}{7}=9\frac{5}{7}\)
\(\Leftrightarrow\frac{2x-1}{2}.3+\frac{5}{7}=\frac{68}{7}\)
\(\Leftrightarrow\frac{6x-3}{2}=\frac{63}{7}\)
\(\Leftrightarrow\frac{6x-3}{2}=9\)
\(\Leftrightarrow6x-3=18\)
\(\Leftrightarrow x=\frac{7}{2}\)
g) \(\left(x+\frac{1}{2}\right)\left(\frac{2}{3}-2x\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x+\frac{1}{2}=0\\\frac{2}{3}-2x=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=\frac{-1}{2}\\x=\frac{1}{3}\end{cases}}\)
Vây \(x\in\left\{\frac{-1}{2};\frac{1}{3}\right\}\)
Bài 1:
\(a,22\frac{1}{2}.\frac{7}{9}+50\%-1,25\)
=\(\frac{45}{2}.\frac{7}{9}+\frac{1}{2}-\frac{5}{4}\)
=\(\frac{35}{2}+\frac{1}{2}-\frac{5}{4}\)
=\(\frac{70}{4}+\frac{2}{4}-\frac{5}{4}\)
=\(\frac{67}{4}\)
\(b,1,4.\frac{15}{49}-\left(\frac{4}{5}+\frac{2}{3}\right):2\frac{1}{5}\)
=\(\frac{7}{5}.\frac{15}{49}-\left(\frac{12}{15}+\frac{10}{15}\right):\frac{11}{5}\)
=\(\frac{3}{7}-\frac{22}{15}.\frac{5}{11}\)
=\(\frac{3}{7}-\frac{2}{3}\)
=\(-\frac{5}{21}\)
\(c,125\%.\left(-\frac{1}{2}\right)^2:\left(1\frac{5}{6}-1,6\right)+2016^0\)
=\(\frac{5}{4}.\frac{1}{4}:\left(\frac{11}{6}-\frac{8}{5}\right)+1\)
=\(\frac{5}{16}:\frac{7}{30}+1\)
=\(\frac{131}{56}\)
\(d,1,4.\frac{15}{49}-\left(20\%+\frac{2}{3}\right):2\frac{1}{5}\)
=\(\frac{7}{5}.\frac{15}{49}-\left(\frac{1}{5}+\frac{2}{3}\right):\frac{11}{5}\)
=\(\frac{3}{7}-\frac{13}{15}:\frac{11}{5}\)
=\(\frac{3}{7}-\frac{13}{33}\)
=\(\frac{8}{231}\)
Bài đ làm giống hệt như bài c
Bài 2 :
\(a,\left|\frac{3}{4}.x-\frac{1}{2}\right|=\frac{1}{4}\)
=>\(\left[{}\begin{matrix}\frac{3}{4}.x-\frac{1}{2}=\frac{1}{4}\\\frac{3}{4}.x-\frac{1}{2}=-\frac{1}{4}\end{matrix}\right.\)
=>\(\left[{}\begin{matrix}\frac{3}{4}.x=\frac{1}{4}+\frac{1}{2}=\frac{3}{4}\\\frac{3}{4}.x=-\frac{1}{4}+\frac{1}{2}=\frac{1}{4}\end{matrix}\right.\)
=>\(\left[{}\begin{matrix}x=\frac{3}{4}:\frac{3}{4}=1\\x=\frac{1}{4}:\frac{3}{4}=\frac{1}{3}\end{matrix}\right.\)
Vậy x ∈{1;\(\frac{1}{3}\)}
\(b,\frac{5}{3}.x-\frac{2}{5}.x=\frac{19}{10}\)
=>\(\frac{19}{15}.x=\frac{19}{10}\)
=>\(x=\frac{19}{10}:\frac{19}{15}=\frac{3}{2}\)
Vậy x ∈ {\(\frac{3}{2}\)}
c,\(\left|2.x-\frac{1}{3}\right|=\frac{2}{9}\)
=>\(\left[{}\begin{matrix}2.x-\frac{1}{3}=\frac{2}{9}\\2.x-\frac{1}{3}=-\frac{2}{9}\end{matrix}\right.\)
=>\(\left[{}\begin{matrix}2.x=\frac{2}{9}+\frac{1}{3}=\frac{5}{9}\\2.x=-\frac{2}{9}+\frac{1}{3}=\frac{1}{9}\end{matrix}\right.\)
=>\(\left[{}\begin{matrix}x=\frac{5}{9}:2=\frac{5}{18}\\x=\frac{1}{9}:2=\frac{1}{18}\end{matrix}\right.\)
Vậy x∈{\(\frac{5}{18};\frac{1}{18}\)}
\(d,x-30\%.x=-1\frac{1}{5}\)
=\(70\%x=-\frac{6}{5}\)
=\(\frac{7}{10}.x=-\frac{6}{5}\)
=>\(x=-\frac{6}{5}:\frac{7}{10}=-\frac{12}{7}\)
Vậy x∈{\(-\frac{12}{7}\)}
Bài 2
a/
\(\Rightarrow\left[{}\begin{matrix}\frac{3}{4}.x-\frac{1}{2}=\frac{1}{4}\\\frac{3}{4}.x-\frac{1}{2}=-\frac{1}{4}\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}\frac{3}{4}.x=\frac{1}{4}+\frac{1}{2}\\\frac{3}{4}.x=-\frac{1}{4}+\frac{1}{2}\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}\frac{3}{4}.x=\frac{3}{4}\\\frac{3}{4}.x=\frac{1}{4}\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=\frac{3}{4}:\frac{3}{4}\\x=\frac{1}{4}:\frac{3}{4}\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=1\\x=\frac{1}{3}\end{matrix}\right.\)
Vậy \(x=1\) hoặc \(x=\frac{1}{3}\)
b/ Đặt x làm thừa số chung rồi tính như bình thường
c/ Tương tự câu a
d/ Tương tự câu b