Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) -4/5 + 5/2x = -3/10
5/2x = -3/10 + 4/5
5/2x = 1/5
5/2x = 1/2
x = 1/2 : 5/2
x = 1/5
b) 4/3 + 5/8 : x = 1/12
5/8x = 1/12 - 4/3
5/8x = -5/4
5 = -5/4.8x
5 = -10x
5/-10 = x
-1/2 = x
x = -1/2
c) (x - 1/3)(x - 2/5) = 0
x - 1/3 = 0 hoặc x - 2/5 = 0
x = 0 + 1/3 x = 0 + 2/5
x = 1/3 x = 2/5
Mấy câu này khá giống nhau nhé anh (câu 1 giống câu 4 và 5, cấu 2 giống câu 3) =)))
Câu 1: 2x - 7 + (x - 14) = 0
<=> 3x -21 = 0
<=> 3x = 21 => x = 7
Câu 2:
x2 - 6x = 0 <=> x.(x - 6) = 0 => \(\orbr{\begin{cases}x=0\\x-6=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=0\\x=6\end{cases}}\)
Chúc anh học tốt !!!
Câu 1, 2 có người làm rồi nên mik làm tiếp cho mấy câu tiếp. Cứ áp dụng A.B = 0 => A = 0 hoặc B = 0
3; ( x - 3 )( 16 - 4x ) = 0
=> x - 3 = 0 hoặc 16 - 4x = 0
=> x = 3 hoặc x = 4
Vậy x = 3 hoặc x = 4.
4; ( x - 3 ) - ( 16 - 4x ) = 0
=> x - 3 - 16 + 4x = 0
=> ( x + 4x ) - ( 3 + 16 ) = 0
=> 5x - 19 = 0
=> x = 19/5
Vậy x = 19/5
5; ( x + 3 ) + ( 16 - 4x ) = 0
=> x + 3 + 16 - 4x = 0
=> ( x - 4x ) + ( 16 + 3 ) = 0
=> 3x + 19 = 0
=> x = 19/3
Vậy x = 19/3
a) làm mẫu cho cả phần b lun
\(|2x-5|+|2,5-x|=0\left(1\right)\)
Ta có: \(2x-5=0\Leftrightarrow x=\frac{5}{2}\)
\(2,5-x=0\Leftrightarrow x=2,5=\frac{5}{2}\)
Lập bảng xét dấu :
2x-5 2,5-x 5/2 0 0 - - + +
+) Với \(x< \frac{5}{2}\Rightarrow\hept{\begin{cases}2x-5< 0\\2,5-x< 0\end{cases}\Rightarrow}\hept{\begin{cases}|2x-5|=5-2x\\|2,5-x|=x-2,5\end{cases}}\left(2\right)\)
Thay (2) vào (1) ta được :
\(5-2x+x-2,5=0\)
\(-x+\frac{5}{2}=0\)
\(x=\frac{5}{2}\)( loại )
+) Với \(x\ge\frac{5}{2}\Rightarrow\hept{\begin{cases}2x-5\ge0\\2,5-x\ge0\end{cases}\Rightarrow}\hept{\begin{cases}|2x-5|=2x-5\\|2,5-x|=2,5-x\end{cases}}\left(3\right)\)
Thay (3) vào (1) ta được :
\(2x-5+2,5-x=0\)
\(x-\frac{5}{2}=0\)
\(x=\frac{5}{2}\)( chọn )
Vậy \(x=\frac{5}{2}\)
a) |2x - 5| + |2,5 - x| = 0
2x - 5 = 0 hoặc 2,5 - x = 0
2x = 0 + 5 -x = 0 - 2,5
2x = 5 -x = -2,5
x = 2,5 x = 2,5
=> x = 2,5
b) |x - 1,5| + |x + 3| = 0
x - 1,5 = 0 hoặc x + 3 = 0
x = 0 + 1,5 x = 0 - 3
x = 1,5 x = -3
=> x = 1,5 hoặc x = -3
c) (5x - 2)2 = 1
(5x - 2)2 = 12
5x - 2 = 1; -1
5x - 2 = 1 hoặc 5x - 2 = -1
5x = 1 + 2 5x = -1 + 2
5x = 3 5x = 1
x = 3/5 x = 1/5
=> x = 3/5 hoặc x = 1/5
d) (4x - 1)3 + 7 = -20
(4x - 1)3 = -20 - 7
(4x - 1)3 = -27
(4x - 1)3 = (-3)3
4x - 1 = -3
4x = -3 + 1
4x = -2
x = -2/4 = -1/2
\(a,\left(x-\dfrac{1}{3}\right)\left(x+\dfrac{2}{3}\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=\dfrac{1}{3}\\x=-\dfrac{2}{3}\end{matrix}\right.\\ b,\left(\dfrac{3}{4}x-\dfrac{9}{16}\right)\left(1,5+\dfrac{-3}{x}\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}\dfrac{3}{4}x=\dfrac{9}{16}\\-\dfrac{3}{x}=-1,5=-\dfrac{3}{2}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{3}{4}\\x=2\end{matrix}\right.\)
a: \(\left(x-\dfrac{1}{3}\right)\left(x+\dfrac{2}{3}\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{1}{3}\\x=-\dfrac{2}{3}\end{matrix}\right.\)
b: \(\left(\dfrac{3}{4}x-\dfrac{9}{16}\right)\left(\dfrac{1}{5}+\left(-3\right):x\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}\dfrac{3}{4}x=\dfrac{9}{16}\\\left(-3\right):x=-\dfrac{1}{5}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{9}{16}:\dfrac{3}{4}=\dfrac{9}{16}\cdot\dfrac{4}{3}=\dfrac{3}{4}\\x=\left(-3\right):\dfrac{-1}{5}=15\end{matrix}\right.\)