Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) 2x (x - 5) - x (3 + 2x) = 26
=> 2x2 - 10x - (3x - 2x2) = 26
=> 2x2 - 10x - 3x - 2x2 = 26
=> -13x = 26 => x = 26 : (-13) = -2
xin loi nhung hoi nhiu mik viet cau tra loi dc ko - Nguyễn Diệu Thảo
a/ \(25x^2-9=0\)
<=> \(\left(5x-3\right)\left(5x+3\right)=0\)
<=> \(\orbr{\begin{cases}5x-3=0\\5x+3=0\end{cases}}\)
<=> \(\orbr{\begin{cases}5x=3\\5x=-3\end{cases}}\)
<=> \(\orbr{\begin{cases}x=\frac{3}{5}\\x=-\frac{3}{5}\end{cases}}\)
b/ \(\left(x+4\right)^2-\left(x+9\right)\left(x-1\right)=16\)
<=> \(x^2+8x+16-x^2+8x-9=16\)
<=> \(16x+7=16\)
<=> \(16x=9\)
<=> \(x=\frac{9}{16}\)
a) \(25x^2-9=0\)
\(\Leftrightarrow\left(5x-3\right)\left(5x+3\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}5x-3=0\\5x+3=0\end{cases}\Leftrightarrow\orbr{\begin{cases}5x=3\\5x=-3\end{cases}\Leftrightarrow}\orbr{\begin{cases}x=\frac{3}{5}\\x=-\frac{3}{5}\end{cases}}}\)
Vậy S = {3/5 ; -3/5}
b) \(\left(x+4\right)^2-\left(x+9\right)\left(x-1\right)=16\)
\(\Leftrightarrow\left(x+4\right)^2-4^2-\left(x+9\right)\left(x-1\right)=0\)
\(\Leftrightarrow\left(x+4-4\right)\left(x+4+4\right)-\left(x+9\right)\left(x-1\right)=0\)
\(\Leftrightarrow x\left(x+8\right)-\left(x+9\right)\left(x-1\right)=0\)
\(\Leftrightarrow x^2+8x-x^2-8x+9=0\)
\(\Leftrightarrow9=0\left(vl\right)\)
Vậy S = \(\varnothing\)
g) \(\left(2x-1\right)^2-\left(2x+4\right)^2=0\)
\(\Leftrightarrow\left(2x-1+2x+4\right)\left(2x-1-2x-4\right)=0\)
\(\Leftrightarrow-5\left(4x+3\right)=0\)
\(\Leftrightarrow4x+3=0\)
\(\Leftrightarrow4x=-3\)
\(\Leftrightarrow x=\frac{-3}{4}\)
Vậy tập nghiệm của pt là \(S=\left\{\frac{-3}{4}\right\}\)
h) \(\left(2x-3\right)\left(3x+1\right)-x\left(6x+10\right)=30\)
\(\Leftrightarrow3x\left(2x-3\right)+\left(2x-3\right)-6x^2-10x=30\)
\(\Leftrightarrow6x^2-9x+2x-3-6x^2-10x=30\)
\(\Leftrightarrow-9x+2x-3-10x=30\)
\(\Leftrightarrow-17x-3=30\)
\(\Leftrightarrow-17x=33\)
\(\Leftrightarrow x=\frac{-33}{17}\)
Vậy tập nghiệm của pt là \(S=\left\{\frac{-33}{17}\right\}\)
a. 5x.(12x+7)-3x.(20x-5)=-150
x=-3
b. ( 2x-1).(3-x)+(x+4).(2x-5)=20
x=43/10
c. 9x2-1+(3x-1)2=0
x=1/3
d. 3x.(x-2)-(3x+2).(x-1)=7
x=-5/2
e. (2x-1)2-(2x+5).(2x-5)=20
x=3/2
f. 4x2-5=4
x=3/2
~~~~~~~~~~~ai đi ngang qua nhớ để lại k ~~~~~~~~~~~~~
~~~~~~~~~~~~ Chúc bạn sớm kiếm được nhiều điểm hỏi đáp ~~~~~~~~~~~~~~~~~~~
\(x\left(2x-7\right)-4x+14=0\Leftrightarrow\left(x-2\right)\left(2x-7\right)=0\Leftrightarrow\left[{}\begin{matrix}x-2=0\\2x-7=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=2\\x=\frac{7}{2}\end{matrix}\right.\)
\(x^2\left(x-1\right)-4\left(x-1\right)=\left(x^2-4\right)\left(x-1\right)=\left(x-2\right)\left(x+2\right)\left(x-1\right)=0\Leftrightarrow\left[{}\begin{matrix}x-2=0\\x+2=0\\x-1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=2\\x=-2\\x=1\end{matrix}\right.\)
\(x^4-x^3-x^2+x=x\left(x^3+1\right)-x^2\left(x+1\right)=x\left(x+1\right)\left(x^2-x+1-x^2\right)=x\left(x+1\right)\left(1-x\right)=0\Leftrightarrow\left[{}\begin{matrix}x=0\\x+1=0\\1-x\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=\pm1\end{matrix}\right.\)
a) \(x\left(2x-7\right)-4x+14-0\Leftrightarrow2x^2-11x+14=0\Leftrightarrow2x^2-4x-7x+14=0\Leftrightarrow2x\left(x-2\right)-7\left(x-2\right)=0\Leftrightarrow\left(2x-7\right)\left(x-2\right)=0\Leftrightarrow\left[{}\begin{matrix}x=3,5\\x=2\end{matrix}\right.\)
b) \(x^2\left(x-1\right)-4x+4=0\Leftrightarrow x^2\left(x-1\right)-4\left(x-1\right)=0\Leftrightarrow\left(x-1\right)\left(x-2\right)\left(x+2\right)=0\Leftrightarrow\left[{}\begin{matrix}x=1\\x=2\\x=-2\end{matrix}\right.\)
c) \(x+x^2-x^3-x^4=0\Leftrightarrow x\left(x^3+x^2-x-1\right)=0\Leftrightarrow x\left[x\left(x^2-1\right)+\left(x^2-1\right)\right]=0\Leftrightarrow x\left(x+1\right)\left(x^2-1\right)=0\Leftrightarrow\left[{}\begin{matrix}x=0\\x=1\\x=-1\end{matrix}\right.\)
d) \(2x^3+3x^2+2x+3=0\Leftrightarrow x^2\left(2x+3\right)+2x+3=0\Leftrightarrow\left(x^2+1\right)\left(2x+3\right)=0\Leftrightarrow x=-1,5\left(x^2+1>0\forall x\right)\)
e) \(4x^2-25-\left(2x-5\right)\left(2x+7\right)=0\Leftrightarrow\left(2x-5\right)\left(2x+5\right)-\left(2x-5\right)\left(2x+7\right)=0\Leftrightarrow\left(2x-5\right)\left(2x+5-2x-7\right)=0\Leftrightarrow2x-5=0\Leftrightarrow x=2,5\)
g) \(x^3+27+\left(x+3\right)\left(x-9\right)=0\Leftrightarrow\left(x+3\right)\left(x^2-3x+9\right)+\left(x+3\right)\left(x-9\right)=0\Leftrightarrow\left(x+3\right)\left(x^2-3x+9+x-9\right)=0\Leftrightarrow x\left(x+3\right)\left(x-2\right)=0\Leftrightarrow\left[{}\begin{matrix}x=0\\x=-3\\x=2\end{matrix}\right.\)
Bài 1 :
a, \(\left(x-3\right)^2-4=0\Leftrightarrow\left(x-3\right)^2=4\Leftrightarrow\left(x-3\right)^2=\left(\pm2\right)^2\)
TH1 : \(x-3=2\Leftrightarrow x=5\)
TH2 : \(x-3=-2\Leftrightarrow x=1\)
b, \(x^2-2x=24\Leftrightarrow x^2-2x-24=0\)
\(\Leftrightarrow\left(x-6\right)\left(x+4\right)=0\)
TH1 : \(x-6=0\Leftrightarrow x=6\)
TH2 : \(x+4=0\Leftrightarrow x=-4\)
c, \(\left(2x-1\right)^2+\left(x+3\right)^2-5\left(x+2\right)\left(x-2\right)=0\)
\(\Leftrightarrow4x^2-4x+1+x^2+6x+9-5\left(x^2-4\right)=0\)
\(\Leftrightarrow2x+30=0\Leftrightarrow x=-15\)
d, tương tự
a. \(2x\left(x+5\right)-x\left(3+2x\right)=26\Leftrightarrow2x^2+10x-3x-2x^2=26\Leftrightarrow7x=26\Leftrightarrow x=\dfrac{26}{7}\)
Vậy \(x=\dfrac{26}{7}\)
b. \(5x\left(x-1\right)=x-1\Leftrightarrow5x\left(x-1\right)-\left(x-1\right)=0\Leftrightarrow\left(x-1\right)\left(5x-1\right)=0\Leftrightarrow\left[{}\begin{matrix}x-1=0\\5x-1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\5x=1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\x=\dfrac{1}{5}\end{matrix}\right.\)
Vậy \(\left[{}\begin{matrix}x=1\\x=\dfrac{1}{5}\end{matrix}\right.\)
c. \(2\left(x+5\right)-x^2-5x=0\Leftrightarrow2\left(x+5\right)-x\left(x+5\right)=0\Leftrightarrow\left(x+5\right)\left(2-x\right)=0\Leftrightarrow\left[{}\begin{matrix}x+5=0\\2-x=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-5\\x=2\end{matrix}\right.\)
Vậy \(\left[{}\begin{matrix}x=-5\\x=2\end{matrix}\right.\)
d. \(\left(2x-3\right)^2-\left(x+5\right)^2=0\Leftrightarrow\left(2x-3-x-5\right)\left(2x-3+x+5\right)=0\Leftrightarrow\left(x-8\right)\left(3x+2\right)=0\Leftrightarrow\left[{}\begin{matrix}x-8=0\\3x+2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=8\\3x=-2\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=8\\x=-\dfrac{2}{3}\end{matrix}\right.\)
Vậy \(\left[{}\begin{matrix}x=8\\x=-\dfrac{2}{3}\end{matrix}\right.\)
e. \(3x^3-48x=0\Leftrightarrow3x\left(x^2-16\right)=0\Leftrightarrow\left[{}\begin{matrix}3x=0\\x^2-16=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x^2=16\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=\pm4\end{matrix}\right.\)
Vậy \(\left[{}\begin{matrix}x=0\\x=\pm4\end{matrix}\right.\)
f. \(x^3+x^2-4x=4\Leftrightarrow x^3+x^2-4x-4=0\Leftrightarrow\left(x^2-4x+4\right)+\left(x^3-8\right)=0\Leftrightarrow\left(x-2\right)^2+\left(x-2\right)\left(x^2+2x+4\right)=0\Leftrightarrow\left(x-2\right)\left(x-2+x^2+2x+4\right)=0\left(x-2\right)\left(x^2+3x+2\right)=0\Leftrightarrow\left(x-2\right)\left(x^2+x+2x+2\right)=0\Leftrightarrow\left(x-2\right)\left[x\left(x+1\right)+2\left(x+1\right)\right]=0\Leftrightarrow\left(x-2\right)\left(x+1\right)\left(x+2\right)=0\Leftrightarrow\left[{}\begin{matrix}x-2=0\\x+1=0\\x+2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=2\\x=-1\\x=-2\end{matrix}\right.\)
Vậy \(\left[{}\begin{matrix}x=-1\\x=\pm2\end{matrix}\right.\)
g. \(\left(x-1\right)\left(2x+3\right)-x\left(x-1\right)=0\Leftrightarrow\left(x-1\right)\left(2x+3-x\right)=0\Leftrightarrow\left(x-1\right)\left(x+3\right)=0\Leftrightarrow\left[{}\begin{matrix}x-1=0\\x+3=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\x=-3\end{matrix}\right.\)
Vậy \(\left[{}\begin{matrix}x=1\\x=-3\end{matrix}\right.\)
h. \(x^2-4x+8=2x-1\Leftrightarrow x^2-4x+8-2x+1=0\Leftrightarrow x^2-6x+9=0\Leftrightarrow\left(x-3\right)^2=0\Leftrightarrow x-3=0\Leftrightarrow x=3\)
Vậy \(x=3\)
__________________________Chúc bạn học tốt____________________________
a, \(2x\left(x-5\right)-x\left(3+2x\right)=26\Leftrightarrow2x^2-10x-3x-2x^2=26\)
\(\Leftrightarrow-13x=26\Leftrightarrow x=-2\)
b, \(\left(x+4\right)^2-\left(x+1\right)\left(x-1\right)=16\Leftrightarrow x^2+8x+16-x^2+1=16\)
\(\Leftrightarrow8x+1=0\Leftrightarrow x=-\frac{1}{8}\)
c, \(\left(2x-1\right)^2-4\left(x-7\right)\left(x+7\right)=0\)
\(\Leftrightarrow4x^2-4x+1-4\left(x^2-49\right)=0\)
\(\Leftrightarrow4x^2-4x+1-4x^2+196=0\Leftrightarrow-4x+197=0\Leftrightarrow x=\frac{197}{4}\)
d, \(x\left(x-5\right)-4x+20=0\Leftrightarrow x^2-9x+20=0\)
\(\Leftrightarrow\left(x-5\right)\left(x-4\right)=0\Leftrightarrow x=4;x=5\)
Trả lời:
a, \(2x\left(x-5\right)-x\left(3+2x\right)=26\)
\(\Leftrightarrow2x^2-10x-3x-2x^2=26\)
\(\Leftrightarrow-13x=26\)
\(\Leftrightarrow x=-2\)
Vậy x = - 2 là nghiệm của pt.
b, \(\left(x+4\right)^2-\left(x+1\right)\left(x-1\right)=16\)
\(\Leftrightarrow x^2+8x+16-x^2+1=16\)
\(\Leftrightarrow8x+17=16\)
\(\Leftrightarrow8x=-1\)
\(\Leftrightarrow x=-\frac{1}{8}\)
Vậy x = - 1/8 là nghiệm của pt.
c, \(\left(2x-1\right)^2-4\left(x+7\right)\left(x-7\right)=0\)
\(\Leftrightarrow4x^2-4x+1-4\left(x^2-49\right)=0\)
\(\Leftrightarrow4x^2-4x+1-4x^2+196=0\)
\(\Leftrightarrow-4x+197=0\)
\(\Leftrightarrow-4x=-197\)
\(\Leftrightarrow x=\frac{197}{4}\)
Vậy x = 197/4 là nghiệm của pt.
d, \(x\left(x-5\right)-4x+20=0\)
\(\Leftrightarrow x\left(x-5\right)-4\left(x-5\right)=0\)
\(\Leftrightarrow\left(x-5\right)\left(x-4\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x-5=0\\x-4=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=5\\x=4\end{cases}}}\)
Vậy x = 5; x = 4 là nghiệm của pt.
Bài1:
\(a,\left(2x+3\right)^2-\left(2x+1\right)\left(2x-1\right)=22\\ \Leftrightarrow\left(2x+3\right)^2-4x^2+1=22\\ \Leftrightarrow\left(2x+3-2x\right)\left(2x+3+2x\right)=21\\ \Leftrightarrow3\left(4x+3\right)=21\\ \Leftrightarrow4x+3=7\\ \Leftrightarrow4x=4\\ \Leftrightarrow x=1\\ Vậy....\\ b,\left(2x-1\right)^3-4x^2\left(2x-3\right)=5\\ \Leftrightarrow8x^3-12x^2+6x-1-8x^3+12x^2=5\\ \Leftrightarrow6x=6\\ \Leftrightarrow x=1\\ Vậy...\)
Các câu sau cũng như thế
Bài2:
\(A=x^2+20x+9\\ =\left(x^2+20x+100\right)-91\\ =\left(x+10\right)^2-91\)
Với mọi x thì \(\left(x+10\right)^2\ge0\\ \Rightarrow\left(x+10\right)^2-91\ge-91\)
Hay \(A\ge-91\)
Để A=-91 thì
\(\left(x+10\right)^2=0\\ \Leftrightarrow x+10=0\\ \Leftrightarrow x=-10\)
Vậy...
\(B=4x^2+5x+7\\ =\left(4x^2+5x+\dfrac{25}{16}\right)+5,4375\\ =\left(2x+\dfrac{5}{4}\right)^2+5,4375\)
Với mọi x;y thì \(\left(2x+\dfrac{5}{4}\right)^2+5,4375\ge5,4375\)
Hay \(A\ge5,4375\)
Để \(A=5,4375\) thì \(\left(2x+\dfrac{5}{4}\right)^2=0\\ \Leftrightarrow2x+\dfrac{5}{4}=0\\ \Leftrightarrow x=\dfrac{-5}{8}\)
Vậy....
mk làm lun nha
a, 2x^2-6x-3x-2x^2=26
-9x=26
x=-26/9
b,x^2+2.x.4+16-(x^2-1)=16
x^2+8x+16-x^2+1=16
8x=-1
x=-1/8
c,(2x)^2-2.2x.1+1-4(x^2-7^2)=0
4x^2-4x+1-4x^2+196=0
-4x=-197
x=197/4
d,x^2-5x-4x+20=0
-9x=-20
x=20/9
**** cho mk nha