K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 2 2020
https://i.imgur.com/F0lkk7k.jpg
15 tháng 2 2020

phần cuối mk chụp ko đc hết . chỗ cuối là bằng \(\frac{-5}{-3}\)=\(\frac{5}{3}\)

6 tháng 7 2018

\(1.6x\left(x-10\right)-2x+20=0\)

\(6x\left(x-10\right)-2\left(x-10\right)=0\)

\(2\left(x-10\right)\left(3x-1\right)=0\)

⇔ x = 10 hoặc x = \(\dfrac{1}{3}\)

KL....

\(2.3x^2\left(x-3\right)+3\left(3-x\right)=0\)

\(3\left(x-3\right)\left(x^2-1\right)=0\)

\(x=+-1\) hoặc \(x=3\)

KL....

\(3.x^2-8x+16=2\left(x-4\right)\)

\(\left(x-4\right)^2-2\left(x-4\right)=0\)

\(\left(x-4\right)\left(x-6\right)=0\)

\(x=4\) hoặc \(x=6\)

KL.....

\(4.x^2-16+7x\left(x+4\right)=0\)

\(\text{⇔}4\left(x+4\right)\left(2x-1\right)=0\)

\(x=-4hoacx=\dfrac{1}{2}\)

KL.....

\(5.x^2-13x-14=0\)

\(x^2+x-14x-14=0\)

\(\text{⇔}\left(x+1\right)\left(x-14\right)=0\)

\(\text{⇔}x=14hoacx=-1\)

KL......

Còn lại tương tự ( dài quá ~ )

29 tháng 1 2022

1.

<=> \(\left[{}\begin{matrix}4-3x=0\\10-5x=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{4}{3}\\x=2\end{matrix}\right.\)

2.

<=>\(\left[{}\begin{matrix}7-2x=0\\4+8x=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{7}{2}\\x=-\dfrac{1}{2}\end{matrix}\right.\)

3.

<=>\(\left[{}\begin{matrix}9-7x=0\\11-3x=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{9}{7}\\x=\dfrac{11}{3}\end{matrix}\right.\)

4.

<=>\(\left[{}\begin{matrix}7-14x=0\\x-2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{1}{2}\\x=2\end{matrix}\right.\)

5. 

<=>\(\left[{}\begin{matrix}\dfrac{7}{8}-2x=0\\3x+\dfrac{1}{3}=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{7}{16}\\x=-\dfrac{1}{9}\end{matrix}\right.\)

6,7. ko đủ điều kiện tìm

29 tháng 1 2022

Oki pạn cảm ơn

 

\(\left(4-3x\right)\left(10x-5\right)=0\)

\(\Rightarrow\orbr{\begin{cases}4-3x=0\\10x-5=0\end{cases}\Rightarrow\orbr{\begin{cases}3x=4\\10x=5\end{cases}\Rightarrow}\orbr{\begin{cases}x=\frac{4}{3}\\x=\frac{1}{2}\end{cases}}}\)

\(\left(7-2x\right)\left(4+8x\right)=0\)

\(\Rightarrow\orbr{\begin{cases}7-2x=0\\4+8x=0\end{cases}\Rightarrow\orbr{\begin{cases}2x=7\\8x=-4\end{cases}\Rightarrow\orbr{\begin{cases}x=\frac{7}{2}\\x=-\frac{1}{2}\end{cases}}}}\)

rồi thực hiện đến hết ... 

Brainchild bé ngây thơ qus e , ko thực hiện đến hết như thế đc đâu :>

\(\left(x-3\right)\left(2x-1\right)=\left(2x-1\right)\left(2x+3\right)\)

\(2x^2-7x+3=4x^2+4x-3\)

\(2x^2-7x+3-4x^2-4x+3=0\)

\(-2x^2-11x+6=0\)

\(2x^2+11x-6=0\)

\(2x^2+12x-x-6=0\)

\(2x\left(x+6\right)-\left(x+6\right)=0\)

\(\left(x+6\right)\left(2x-1\right)=0\)

\(x+6=0\Leftrightarrow x=-6\)

\(2x-1=0\Leftrightarrow2x=1\Leftrightarrow x=\frac{1}{2}\)

\(3x-2x^2=0\)

\(x\left(2x-3\right)=0\)

\(x=0\)

\(2x-3=0\Leftrightarrow2x=3\Leftrightarrow x=\frac{3}{2}\)

Tự lm tiếp nha 

30 tháng 10 2018

phân tích đa thức thành nhân tử chung ( phương pháp nhóm )

30 tháng 10 2018

        

       \(3x^5-10x^4-8x^3-3x^2+10x+8\)

\(=3x^5-3x^4-7x^4+7x^3-15x^3+15x^2-18x^2+18x-8x+8\)

\(=\left(x-1\right)\left(3x^4-7x^3-15x^2-18x-8\right)\)

\(=\left(x-1\right)\left[3x^3\left(x-4\right)+5x^2\left(x-4\right)+5x\left(x-4\right)+2\left(x-4\right)\right]\)

\(=\left(x-1\right)\left(x-4\right)\left[3x^3+5x^2+5x+2\right]\)

\(=\left(x-1\right)\left(x-4\right)\left[x^2\left(3x+2\right)+x\left(3x+2\right)+\left(3x+2\right)\right]\)

\(=\left(x-1\right)\left(x-4\right)\left(3x+2\right)\left(x^2+x+1\right)\)

30 tháng 6 2017

a) \(\left(x^4+2x^3+10x-25\right):\left(x^2+5\right)\)

\(=\left[\left(2x^3+10x\right)+\left(x^4-25\right)\right]:\left(x^2+5\right)\)

\(=\left[2x\left(x^2+5\right)+\left(x^2-5\right)\left(x^2+5\right)\right]:\left(x^2+5\right)\)

\(=\left(x^2+5\right)\left(x^2+2x-5\right):\left(x^2+5\right)\)

\(=x^2+2x-5\)

18 tháng 1 2022

một đòn bẫy dài một mét .đặt ở đâu để có thể dùng 3600n có thể nâng tảng đá nặng 120kg?

3 tháng 7 2019

Mik quên mất ghi đề bài r ! Xin lỗi nhé ! Đề bài là:

Bài 2: Phân tích thành nhân tử ( bằng kĩ thuật tách hạng tử).

3 tháng 7 2019

Đây là toàn bộ nội dung câu hỏi các bạn nhé!

Phân tích đa thức thành nhân tử bằng cách phối hợp nhiều phương phápPhân tích đa thức thành nhân tử bằng cách phối hợp nhiều phương pháp