Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
vì \(2n+5⋮2n+5\)
=>\(3\left(2n+5\right)⋮2n+5\)
\(\Rightarrow6n+15⋮2n+5\)
vì\(3n+7⋮3n+7\)
=>\(2\left(3n+7\right)⋮3n+7\)
=> \(6n+14⋮3n+7\)
gọi ƯC(6n+14;6n+15) là d
=>6n+14\(⋮d\)
=>6n+15\(⋮d\)
\(\Leftrightarrow\left(6n+15\right)-\left(6n+14\right)⋮d\)
\(\Rightarrow1⋮d\)
\(\Rightarrow d\inƯ\left(1\right)\)
hay ƯC (6n+14;6n+15) là 1
hay ƯCc( 2n + 5 và 3n +7) là 1
Gọi d là ƯC(2n+3;3n+7) (d thuộc N*)
=>2n+3 chia hết cho n=>6n+9 chia hết cho d
=>3n+7 chia hết cho n=>6n+14 chia hết cho d
=>6n+9 -6n-14 chia hết cho d
=>5 chia hết cho d
=>d \(\in\)Ư(5)={1;-1;5;-5}
Mà d thuộc N*=>d \(\in\){1;5}
Vậy ƯC(2n+3;3n+7}={1;5}
b: Gọi d=UCLN(2n+1;3n+1)
\(\Leftrightarrow3\left(2n+1\right)-2\left(3n+1\right)⋮d\)
\(\Leftrightarrow1⋮d\)
=>d=1
=>UC(2n+1;3n+1)={1;-1}
c: Gọi d=UCLN(75n+6;8n+7)
\(\Leftrightarrow8\left(5n+6\right)-5\left(8n+7\right)⋮d\)
\(\Leftrightarrow d=13\)
=>UC(5n+6;8n+7)={1;-1;13;-13}
Gọi d là UCLN của 2n+1 và 3n+1
Ta có :
\(2n+1⋮d\)
\(3n+1⋮d\)
\(\Rightarrow3\left(2n+1\right)⋮d\)
\(\Rightarrow2\left(3n+1\right)⋮d\)
\(\Rightarrow\left(6n+3\right)-\left(6n+2\right)⋮d\)
\(\Rightarrow1⋮d\Rightarrow d=1\)
ƯC = 1 k nhé