Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có:
\(1+2+3+....+n=\overline{aaa}\)
\(\Rightarrow\left(n+1\right).n\div2=\overline{aaa}\)
\(\Rightarrow\left(n+1\right).n\div2=111.a\)
\(\Rightarrow\left(n+1\right).n=111.a.2\)
\(\Rightarrow\left(n+1\right).n=37.6a\)
Vì 37 là số nguyên tố \(\Rightarrow n+1⋮37\) hoặc \(n⋮37\)
Mà \(\overline{aaa}\le999\Rightarrow n< 50\)
\(\Rightarrow n+1=37\)hoặc \(n=37\)
Nếu \(n=37\Rightarrow6a=38\) (loại)
Nếu \(n+1=37\Rightarrow n=36\Rightarrow a=36\)
Thử lại: \(\left(36.37\right)\div2=666\) (thỏa mãn)
Vậy \(n=36;a=6\)
Gọi ước ( n+3 ; 2n+5)=d (d ϵ N*)
⇒ n+3 ⋮ d và 2n+5 ⋮ d
⇒2n+6 ⋮ d và 2n+5 ⋮ d
⇒ (2n+6) - (2n+5) ⋮ d
⇒ 1 ⋮ d
Mà d ϵ N*
⇒ d = 1
Ta có: Ư(1)={1}{1}
Vậy ƯC (n+3;2n+5) = {1}
\(a,\left(n+3\right)⋮\left(n+1\right)\)
\(n+3⋮n+1\)
\(n+1+2⋮n+1\)
Vì \(n+1⋮n+1\)
\(2⋮n+1\)
\(\Rightarrow n+1\inƯ\left(2\right)\left\{\pm1;\pm2\right\}\)
Ta lập bảng xét giá trị
n+1 | 1 | -1 | 2 | -2 |
n | 0 | -2 | 1 | -3 |
a) Ta có : n+3\(⋮\)n+1
\(\Rightarrow\)n+1+2\(⋮\)n+1
Vì n+1\(⋮\)n+1 nên 2\(⋮\)n+1
\(\Rightarrow n+1\inƯ\left(2\right)=\left\{\pm1;\pm2\right\}\)
...
b) Ta có : 2n+6\(⋮\)2n-6
\(\Rightarrow\)2n-6+12\(⋮\)2n-6
Vì 2n-6\(⋮\)2n-6 nên 12\(⋮\)2n-6
\(\Rightarrow2n-6\inƯ\left(12\right)=\left\{\pm1;\pm2;\pm3;\pm4;\pm6;\pm12\right\}\)
...
c) Ta có : 2n+3\(⋮\)n-2
\(\Rightarrow\)2n-4+7\(⋮\)n-2
\(\Rightarrow\)2(n-2)+7\(⋮\)n-2
Vì 2(n-2)\(⋮\)n-2 nên 7\(⋮\)n-2
\(\Rightarrow n-2\inƯ\left(7\right)=\left\{\pm1;\pm7\right\}\)
...
d) Tương tự phần c.
Gọi (n + 2;2n + 5) = d
=> \(\hept{\begin{cases}n+2⋮d\\2n+5⋮d\end{cases}}\Rightarrow\hept{\begin{cases}2\left(n+2\right)⋮d\\2n+5⋮d\end{cases}}\Rightarrow\hept{\begin{cases}2n+4⋮d\\2n+5⋮d\end{cases}}\Rightarrow2n+5-\left(2n+4\right)⋮d\)
=> \(1⋮d\Rightarrow d=1\)
=> ƯC(n + 2;2n + 5) = 1
b) Gọi (2n + 1 ; 2n + 5) = d
=> \(\hept{\begin{cases}2n+1⋮d\\2n+5⋮d\end{cases}}\Rightarrow2n+5-\left(2n+1\right)⋮d\Rightarrow4⋮d\)
=> \(d\inƯ\left(4\right)=\left\{1;2;4\right\}\)
Dế thấy \(\hept{\begin{cases}2n+1⋮̸2\\2n+5⋮̸2\end{cases}}\)(1)
từ (1) => \(\hept{\begin{cases}2n+1⋮̸4\\2n+5⋮̸4\end{cases}}\)
=> d = 1
=> ƯC(2n + 1; 2n + 5) = 1
TKL:
b) Vì 2n + 5 là số lẻ nên 2n + 5 không chia hết cho 4
=> 4 không thể là ước chung của 2n + 5 và n + 1
Vậy........................
^HT^
a/ Gọi d là ƯSC của n+5 và n+3 => n+5 và n+3 cùng chia hết cho d
=> (n+5)-(n+3)=2 chia hết cho d => d={-2;-1; 1; 2}
b/ Gọi d là ƯSC của n+2 và 2n+1
=> 2n+1 chia hết cho d
=> n+2 chia hết cho d => 2(n+2)=2n+4 cũng chia hết cho d
=> 2(n+2)-(2n+1)=3 cũng chia hết cho d => d={-3; -1; 1; 3}