Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a,xem lại lí thuyết nhé,theo mh thì 2 số liên tiếp có ước chung là 1
2 số chẵn có ước chung là 2
Gọi UCLN(a,a+1)là b,ta có:
a\(⋮\)b,a+1\(⋮\)b
\(\Rightarrow\)a+1-a\(⋮\)b
\(\Rightarrow\)1\(⋮\)b
\(\Rightarrow\)b=1
Vậy UCLN(a,a+1)=1
Vậy UC(a,a+1)\(\in\){1}
b, Tương tự như câu trên
1. Gọi d là ước số chung của n+3 và 2n+5, d,n C N. Khi đó 2(n+3)-(2n+5) chia hết cho d hay 1 chia hết cho d, vậy d=1 hay 2 số n+3 và 2n+5 là 2 số nguyên tố cùng nhau
2. Nếu d là USC của n+1 và 2n+5 thì (2n+5)-2(n+1) chia hết cho d hay 3 chia hết cho d, vậy d=1 hoặc 3 do đó số 4 không thể là USC của 2 số n+1 và 2n+5
Gọi ƯC(2n + 1 và 3n + 1)= d
Ta có :
2n + 1 chia hết cho d => 3(2n + 1 ) chia hết cho d
Hay 6n + 3 chia hết cho d ( 1 )
3n + 1 chia hết cho d => 2(3n + 1 ) chia hết cho d
Hay 6n + 2 chia hết cho d ( 2 )
Từ (1 ) và ( 2 ) => ( 6n + 3 - 6n - 2 ) chia hết cho d
=> 1 chia hết cho d
=> d là ước của 1
=> d thuộc tập hợp ước của 1
=> tập hợp ước chung của 2n + 1 và 3n + 1 là -1 và 1
Gọi d là ước chung của 5n + 6 và 8n + 7
=> d là ước 3n + 1
=> d là ước chung của 5n + 6 và 3n + 1 → d là ước 2n + 5
=> d là ước chung của 3n + 1 và 2n + 5 → d là ước n - 4
=> d là ước chung của 2n + 5 và n - 4 → d là ước của n + 9
=> d là ước chung của n + 9 và n - 4 → d là ước của 13
Vậy tập hợp các ước chung ( không âm ) của 5n + 6 và 8n + 7 = { 1 ; 13 }
Nếu n # 4 + 13 k thì tập hợp ước chung của 5n + 6 và 8n + 7 là 1
1. Gọi d là ước chung của n+3 và 2n+5
Ta có: n+3 \(⋮\)d , 2n+5\(⋮d\)
=> (2n+6)-(2n+5) chia hết cho d=> 1 chia hết cho d
Vậy ƯC của n+3 và 2n+5 là 1
2. giả sử 4 là ƯC của n+1 và 2n+5
Ta cs: n+1 \(⋮\)4 , 2n+5\(⋮\)4
=> (2n+5)-(2n+2) chia hết cho 4=> 3 chia hết cho 4(vô lý)
Vậy số 4 không thể là ƯC của n+1 và 2n+5.
Bạn ghét những đứa đặt tên dài, cậu có thể giải thích tại sao ở câu 1, n + 3=2n+6 được chứ, cả câu 2 n+1=2n+5 nữa. Cảm ơn!
Gọi ƯCLN(2n; 2n+2) là d
=> 2n chia hết cho d
2n+2 chia hết cho d
=> 2n+2-2n chia hết cho 2\
=> 2 chia hết cho 2
Có 2n chia hết cho 2; 2n+2 chia hết cho 2
=> d = 2
=> ƯCLN(2n; 2n+2) = 2
=> ƯC(2n; 2n+2) = {1; -1; 2; -2}
vi 2N = 2.1N
2N+2 = (1N+1).2
=>UCLN(2N,2N+2)=2
=>UC(2N,2N+2)={1;2}
mình là người trả lời câu hỏi đầu tiên nên nhớ **** mình nhá
Gọi (n + 2;2n + 5) = d
=> \(\hept{\begin{cases}n+2⋮d\\2n+5⋮d\end{cases}}\Rightarrow\hept{\begin{cases}2\left(n+2\right)⋮d\\2n+5⋮d\end{cases}}\Rightarrow\hept{\begin{cases}2n+4⋮d\\2n+5⋮d\end{cases}}\Rightarrow2n+5-\left(2n+4\right)⋮d\)
=> \(1⋮d\Rightarrow d=1\)
=> ƯC(n + 2;2n + 5) = 1
b) Gọi (2n + 1 ; 2n + 5) = d
=> \(\hept{\begin{cases}2n+1⋮d\\2n+5⋮d\end{cases}}\Rightarrow2n+5-\left(2n+1\right)⋮d\Rightarrow4⋮d\)
=> \(d\inƯ\left(4\right)=\left\{1;2;4\right\}\)
Dế thấy \(\hept{\begin{cases}2n+1⋮̸2\\2n+5⋮̸2\end{cases}}\)(1)
từ (1) => \(\hept{\begin{cases}2n+1⋮̸4\\2n+5⋮̸4\end{cases}}\)
=> d = 1
=> ƯC(2n + 1; 2n + 5) = 1
TKL:
b) Vì 2n + 5 là số lẻ nên 2n + 5 không chia hết cho 4
=> 4 không thể là ước chung của 2n + 5 và n + 1
Vậy........................
^HT^
1 và 2 nha bạn.
ƯC={1;2}