Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi ƯCLN(4n+3; 2n+3) là d. Ta có:
4n+3 chia hết cho d
2n+3 chia hết cho d => 4n+6 chia hết cho d
=> 4n+6-(4n+3) chia hết cho d
=> 3 chia hết cho d
Giả sử ƯCLN(4n+3; 2n+3) \(\ne\)1
=> 2n+3 chia hết cho 3
=> 2n+3+3 chia hết cho 3
=> 2n+6 chia hết cho 3
=> 2(n+3) chia hết cho 3
=> n+3 chia hết cho 3
=> n = 3k - 3
Vậy để ƯCLN(2n+3; 4n+3) = 1 thì n \(\ne\) 3k-3
Mình chỉ tạm thời trả lời câu c thôi:
+ Nếu n là số chẵn thì n là số chẵn sẽ chia hết cho 2
suy ra: n.(n+5) sẽ chia hết cho 2 (1)
+ Nếu n là số lẻ thì n+5 là số chẵn sẽ chia hết cho 2
suy ra: n.(n+5) sẽ chia hết cho 2 (2)
Vậy: từ 1 và 2 ta chứng minh rằng tích n.(n+5) luôn luôn chia hết cho 2 với mọi số tự nhiên n
gọi m là ƯCLN (2n+3;4n+6)
=> 2n + 3 chia hết cho m
=> 2(2n+3) chia hết cho m
=> 4n+6 chia hết cho m
=> [(4n+6)-(4n+6)]chia hết cho m
còn phần sau thì bn tự lm tiếp nha
b,gọi x là ƯCLN(2n+3 và 4n +8)
=> 2n + 3 chia hết cho m
=> 2(2n+3) chia hết cho m
=> 4n+6 chia hết cho m
=> [(4n+8)-(4n+6)]chia hết cho m
=>2 chia hết cho m
còn phần sau bn tự lm típ nha
chúc bn hok tốt
Gọi d ∈ ƯC(2n + 3, 4n + 8) (d ∈ N)
=> (2n + 3)⋮d và (4n + 8)⋮d
=> 2(2n + 3)⋮d và (4n + 8)⋮d
=> (4n + 6)⋮d và (4n + 8)⋮d
=> [(4n + 8) - (4n + 6)]⋮d
=> 2⋮d
=> d ∈ Ư(2)
=> d ∈ {1; 2}
Vì 2n + 3 là số lẻ nên d ≠ 2
=> d = 1
=> ƯC(2n + 3 ; 4n + 8) = {1}
=> ƯCLN(2n + 3, 4n + 8) = 1
Vậy ƯCLN(2n + 3, 4n + 8) = 1