Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
gọi ước chung của 2 số đó là d ta thấy:
7n+3 chia hết cho d nghiễn nhiên 8x(7n+3) vẫn chia hết cho d suy ra 56n+24 chia hết cho d
8n-1............................................. 7x(8n-1)........................................... 56n-7........................
suy ra (56n+24)-(56-7)chia hết cho d
suy ra 56n+24-56n+7 chia hết cho d
suy ra (56n-56n)+24+7chia hết cho d
suy ra 0+24+7 chia hết cho d
suy ra 31 chia hết cho d
mà ước lớn nhất của 31 chính là 31
suy ra ƯCLN(7n+3;8n-1) =31
2.khi n=1
3.bạn tự tính nha
Gọi ƯCLN(7n+3; 8n -1) = d ( d thuộc N*)
=> 7n+3 chia hết cho d
=> 8n-1 chia hết cho d
=>8(7n+3) chia hết cho d
=>7(8n-1) chia hết cho d
=>56n+24 chia hết cho d
=>56n-7 chia hết cho d
=> (56n+24) - (56n - 7) chia hết cho d
=> 31 chia hết cho d
Mà d thuộc N*
=> d thuộc { 1; 31}
Giả sử d =31
=> 7n + 3 chia hết cho 31
=> 7n+3 - 31 chia hết cho 31 ( do 31 chia hết cho 31)
=> 7n -28 chi hết cho 31
=>7(n-4) chia hết cho 31
Mà (7,31) =1
=> n-4 chia hết cho 31
=>n chia 31 dư4
=> n thuộc { 4 ; 35 ; 66 ; 97 ; ........}
Vậy để thỏa mãn thì điều kiện của n : n từ 40 đến 90 và khác 66
Gọi d là ƯC(7n + 3, 8n – 1). Suy ra:
7n + 3 ⋮ d và 8n – 1⋮d
=> 56n + 24 ⋮d và 56n – 7 ⋮ d
=> 31 ⋮ d
=> d ∈ {1; 31}Nếu 7n + 3 ⋮ 31
=> 7n + 3 – 31 ⋮ 31
=> 7n – 28 ⋮ 31
=> 7.(n – 4) 31, vì: (7, 31) = 1
=> n – 4 ⋮ 31
=> n – 4 = 31k (Với k thuộc N)
=> n = 31k + 4
Thay vào 8n – 1 = 8.(31k + 4) – 1
= 8.31k + 31
= 31.(8k + 1) 31
.=> UCLN(7n + 3, 8n – 1) = 31 nếu n = 31k + 4 (Với k thuộc N).
Với n ≠ 31k + 4 thì UCLN(7n + 3, 8n – 1) = 1 (Với k thuộc N).
Để hai số 7n + 3 và 8n – 1 là hai số nguyên tố cùng nhau
<=> UCLN(7n + 3, 8n – 1) = 1
<=> n ≠ 31k + 4 (Với k thuộc N).
Kết luận:+) Với n = 31k + 4 thì UCLN(7n + 3, 8n – 1) = 31 (Với k thuộc N)
+) Với n ≠ 31k + 4 thì UCLN(7n + 3, 8n – 1) = 1 (Với k thuộc N)+)
Với n ≠ 31k + 4 thì hai số 7n + 3 và 8n – 1 là hai số nguyên tố cùng nhau.
Gọi d là ƯC(7n + 3, 8n – 1). Suy ra:
7n + 3 ⋮ d và 8n – 1⋮d
=> 56n + 24 ⋮d và 56n – 7 ⋮ d
=> 31 ⋮ d
=> d ∈ {1; 31}
Nếu 7n + 3 ⋮ 31
=> 7n + 3 – 31 ⋮ 31
=> 7n – 28 ⋮ 31
=> 7.(n – 4) 31, vì: (7, 31) = 1
=> n – 4 ⋮ 31
=> n – 4 = 31k (Với k thuộc N)
=> n = 31k + 4
Thay vào 8n – 1 = 8.(31k + 4) – 1 = 8.31k + 31 = 31.(8k + 1) 31.
=> UCLN(7n + 3, 8n – 1) = 31 nếu n = 31k + 4 (Với k thuộc N).
Với n ≠ 31k + 4 thì UCLN(7n + 3, 8n – 1) = 1 (Với k thuộc N).
Để hai số 7n + 3 và 8n – 1 là hai số nguyên tố cùng nhau <=> UCLN(7n + 3, 8n – 1) = 1
<=> n ≠ 31k + 4 (Với k thuộc N).
Kết luận:
+) Với n = 31k + 4 thì UCLN(7n + 3, 8n – 1) = 31 (Với k thuộc N)
+) Với n ≠ 31k + 4 thì UCLN(7n + 3, 8n – 1) = 1 (Với k thuộc N)
+) Với n ≠ 31k + 4 thì hai số 7n + 3 và 8n – 1 là hai số nguyên tố cùng nhau
hình như sai sai
ngược lại nếu đúng cho mk