K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 2 2017

Ta có: 40x<41x

=> 40x+41<41x+41y=41(x+y)

Vậy \(\left(x+y\right)^4< 41\left(x+y\right)\Leftrightarrow\left(x+y\right)^3< 41\)Mà x,y \(\in Z^+\)=> x+y\(\le3\)

Mà \(40x+41\ge40.1+41\Leftrightarrow\left(x+y\right)^4\ge81\Leftrightarrow x+y\ge3\)

Vậy x+y=3

Thay vào ta được x=1 => y=2

Vậy (x,y)=(1,2) là nghiệm duy nhất

21 tháng 2 2017

xin lỗi anh đánh thiếu nhé, em bổ xung thêm nhé!

\(\left(x+y\right)^3< 41\left(x+y\right)< 41\left(1+1\right)=82\Leftrightarrow x+y\le3\)

Do x, y là số nguyên dương nên 40x < 41x; 41 \(\le41y\) , khi đó ta có:

( x + y )4 = 40x + 41 < 41x + 41y = 41( x + y )

Suy ra ( x + y )4 < 41( x + y )

\(\Leftrightarrow\left(x+y\right)^3< 41< 64=4^3\)

\(\Rightarrow x+y< 4\)( 1 )

Ta thấy x là số nguyên dương nên \(40x+41\ge40×1+41=81\)

\(\Rightarrow\left(x+y\right)^4\ge81\)

\(\Rightarrow x+y\ge3\) ( 2 )

Từ ( 1 ) và ( 2 ) suy ra \(3\le x+y< 4\)

Mà \(\left(x+y\inℕ^∗\right)\Rightarrow x+y=3\)

Suy ra ( x ; y ) = (1; 2 ) ; ( 2 ; 1 ) ( do x, y là số nguyên dương )

Thử lại chỉ có x = 1 ; y = 2 thỏa mãn

Vậy x = 1 ; y = 2

Cbht

13 tháng 3 2023

Do x, y là số nguyên dương nên 40x < 41x; 41 ≤41�41y , khi đó ta có:

( x + y )4 = 40x + 41 < 41x + 41y = 41( x + y )

Suy ra ( x + y )4 < 41( x + y )

⇔(�+�)3<41<64=43(x+y)3<41<64=43

⇒�+�<4x+y<4( 1 )

Ta thấy x là số nguyên dương nên 40�+41≥40×1+41=8140x+4140×1+41=81

⇒(�+�)4≥81(x+y)481

⇒�+�≥3x+y3 ( 2 )

Từ ( 1 ) và ( 2 ) suy ra 3≤�+�<43x+y<4

Mà (�+�∈N∗)⇒�+�=3(x+yN)x+y=3

Suy ra ( x ; y ) = (1; 2 ) ; ( 2 ; 1 ) ( do x, y là số nguyên dương )

Thử lại chỉ có x = 1 ; y = 2 thỏa mãn

Vậy x = 1 ; y = 2

Cbht

1 tháng 9 2016

ek cu hay qua do 

                      n.minh

 

17 tháng 4 2016

x=1, y=2

31 tháng 12 2015

Câu1 :K=2

Câu 2:a=-5;-1;1;5

Câu 3:x=5

Câu4:x=3

Câu 5:-1

31 tháng 12 2015

CHTT nha