K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 4 2018

Ta có:

\(A\left(x\right)=a_nx^n+a_{n-1}x^{n-1}+...+a_2x^2+a_1x+a_0\)

\(A\left(1\right)=a_n+a_{n-1}+...+a_2+a_1+a_0\)

=>A(1) là tổng các hệ số

Áp dụng:

\(P\left(1\right)=\left(1^3-2.1^2+4.1-2\right)^{20}\)

\(P\left(1\right)=\left(1-2+4-2\right)^{20}\)

\(P\left(1\right)=1^{20}\)

Vậy tổng các hệ số của P(x) là 1

11 tháng 8 2019

Tổng các hệ số của đa thức  \(f\left(x\right)\)bất kỳ bằng giá trị của nó tại x=1

Ta có:\(f\left(1\right)=\left(3-4\cdot1+1^2\right)^{2017}+\left(4-5\cdot1+2\cdot1^2\right)^{2017}\)

\(=0^{2017}+1^{2017}\)

\(=1\)

19 tháng 2 2018

Đặt \(A\left(x\right)=\left(x^4+4x^2-5x+1\right)^{2017}.\left(2x^4-4x^2+4x-1\right)^{2018}\)

Gọi đa thức A(x) sau khi bỏ dấu ngoặc là : 

\(A\left(x\right)=a_{32280}x^{32280}+a_{32279}x^{32279}+....+a_1x+a_0\)

Ta thấy tổng giá trị các hệ số của đa thức \(a_{32280}+a_{32279}+...+a_1+a_0\)chính là giá trị của đa thức tại \(x=1\)

Ta có \(A\left(1\right)=\left(1^4+4.1^2-5.1+1\right)^{2017}.\left(2.1^4-4.1^2+4.1-1\right)^{2018}=0\)

Vì \(A\left(1\right)=0\)nên \(a_{32280}+a_{32279}+...+a_1+a_0=0\)

Vậy tổng các hệ số của đa thức sau khi bỏ dấu ngoặc bằng  0

4 tháng 3 2020

- Tổng các hệ số của 1 đa thức A(x) bất kì bằng giá trị của đa thức đó tại x = 1. Vậy tổng các hệ số của đa thức :

A(x)=A(1)=(3−4.1+12)2004(3+4.1+12)2005A(x)=A(1)=(3−4.1+12)2004(3+4.1+12)2005

=0.(3+4.1+12)2005=0=0.(3+4.1+12)2005=0

Vậy tổng các hệ số của đa thức nhận được sau khi bỏ dấu ngoặc là 0 .

4 tháng 4 2016

Bai 2; x=1 hoac x= -1 

17 tháng 4 2019

Ta biết rằng: Mọi đa thức f(x) sau khi khai triển đều có dạng: \(f\left(x\right)=a_nx^n+a_{n-1}x^{n-1}+...+a_1x+a_0\)

Ta thấy rằng: Thay x = 1 vào,ta được: \(f\left(1\right)=a_n+a_{n-1}+...+a_1+a_0\) đúng bằng tổng các hệ số của đa thức sau khi khai triển.

Áp dụng vào,ta có: Tổng các hệ số của đa thức f(x) là giá trị của f(x) tại x = 1:

\(=\left(1+4-5+1\right)^{2013}-\left(2-4+4-1\right)^{2014}=1-1=0\)

16 tháng 4 2019

\(f\left(1\right)=\left(1^4+4.1^2-5.1+1\right)^{2013}-\left(2.1^4-4.1^2+4.1-1\right)^{2014}\)

           \(=1^{2013}-1^{2014}\)

           \(=0\)