Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) x3 + 2x2 + x
= x3 + x2 + x2 + x
= x2 ( x + 1 ) + x ( x + 1 )
= ( x2 + x ) ( x + 1 )
Đặt \(A=x^3-13x+m=\left(x^2+4x+3\right).\left(x+p\right)\)
Khi đó \(\left(x^2+4x+3\right)\left(x+p\right)=x^3+x^2\left(p+4\right)+x\left(4p+3\right)+3p\)
Sử dụng hệ số bất định được
\(\hept{\begin{cases}p+4=0\\4p+3=-13\\m=3p\end{cases}}\) \(\Leftrightarrow\hept{\begin{cases}p=-4\\m=-12\end{cases}}\)
Vậy m = -12
Câu còn lại tương tự.
a, Gọi thương của đa thức là Q(x) ta có:
A= x^3 - 13x + m = (x^2 + 4x + 3).Q(x)
Với x=-1 ta có :
A= (-1)^3 + 13.1 +m = 0
= -1 + 13 + m = 0
=> m= 0 + 1 -13
= -12
Vậy m=-12 (Ở đây mình chọn x= -1 là vì -1 là ngiệm của đa thức chia để VP bằng không và nếu thay x vào cả 2 về thì biểu thức A có giá trị không đổi tương tự nếu đa thức chia có 2 nghiệm thì bạn thay x bằng các nghiệm đó theo 2 trường hợp và dễ dàng tìm ẩn số)
b,Giai tương tự
1. Thực hiện phép chia đa thức: ta có kết quả:
\(x^3+5x^2+3x+a=\left(x+3\right)\left(x^2+2x+b\right)+\left(-3-b\right)x+a-3b\)
Để f(x) chia hết cho x2+2x+b thì -3-b=0 và a-3b=0 <=> b=-3; a=-9
P(x) = 2 + 5x2 – 3x3 + 4x2 –2x – x3 + 6x5
P(x) = 2 + (5x2+ 4x2) + (– 3x3– x3) – 2x + 6x5
P(x) = 2 + 9x2 – 4x3– 2x + 6x5
Sắp xếp các hạng tử của P(x) theo lũy thừa giảm của biến, ta có
P(x) = 6x5 – 4x3 + 9x2 – 2x + 2
`A+B=x^4 +5x^3 -x^2 -x+1+x^4 +2x^3 -2x^2 -3x+2`
`=2x^4 +7x^3 -3x^2 -4x+3`
`A-B=x^4+5x^3-x^2-x+1-(x^4 +2x^3-2x^2-3x+2)`
`=x^4+5x^3-x^2-x+1-x^4-2x^3+2x^2+3x-2`
`=3x^3+x^2+2x-1`