K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

HQ
Hà Quang Minh
Giáo viên
29 tháng 9 2023

a) Xét phương trình tham số của d: \(\left\{ \begin{array}{l}x =  - 1 - 3t\left( 1 \right)\\y = 2 + 2t\left( 2 \right)\end{array} \right.\).

 Lấy \(\left( 1 \right) + \frac{3}{2}.\left( 2 \right) \Rightarrow x + \frac{3}{2}y = 2 \Rightarrow 2x + 3y - 4 = 0\)

Vậy phương trình tổng quát của đường thẳng d là: \(2x + 3y - 4 = 0\)

b) Xét hệ phương trình: \(\left\{ \begin{array}{l}2x + 3y - 4 = 0\\x = 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}y = \frac{4}{3}\\x = 0\end{array} \right.\) . Vậy giao điểm của d với trục Oy là: \(A\left( {0;\frac{4}{3}} \right)\)

Xét hệ phương trình: \(\left\{ \begin{array}{l}2x + 3y - 4 = 0\\y = 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}y = 0\\x = 2\end{array} \right.\) . Vậy giao điểm của d với trục Ox là: \(B\left( {2;0} \right)\)

c) Thay tọa độ điểm \(M\left( { - 7;{\rm{ }}5} \right)\)vào phương trình đường thẳng d ta có: \(2.\left( { - 7} \right) + 3.5 - 4 \ne 0\)

Vậy \(M\left( { - 7;{\rm{ }}5} \right)\)không thuộc đường thẳng d.

NV
11 tháng 4 2020

2.

Đường thẳng d có 1 vtcp là \(\left(-2;3\right)\) hoặc \(\left(2;-3\right)\) cũng được

7.

Phương trình tham số của d: \(\left\{{}\begin{matrix}x=1-4t\\y=-4+9t\end{matrix}\right.\)

11 tháng 4 2020

2. VTCP: (-2;3)

7. \(d\left\{{}\begin{matrix}QuaA\left(1;-4\right)\\\overrightarrow{u}=\left(-4;9\right)\end{matrix}\right.\)=> PTTS \(\left\{{}\begin{matrix}x=1-4t\\y=-4+9t\end{matrix}\right.\)

23 tháng 11 2021

A nhé

hihhihihiihihihhiihhiihihihih

HQ
Hà Quang Minh
Giáo viên
29 tháng 9 2023

a)  Từ phương trình tổng quát của đường thẳng, ta lấy được một vecto pháp tuyến là: \(\overrightarrow n  = \left( {1; - 2} \right)\) nên ta chọn vecto chỉ phương của đường thẳng d là: \(\overrightarrow u  = \left( {2;1} \right)\).

 Chọn điểm \(A\left( {1; - 2} \right) \in d\).Vậy phương trình tham số của đường thẳng d là: \(\left\{ \begin{array}{l}x = 1 + 2t\\y =  - 2 + t\end{array} \right.\) (t là tham số)

b)  Do điểm M thuộc d nên ta có: \(M\left( {1 + 2m; - 2 + m} \right);m \in \mathbb{R}\).

 Ta có: \(OM = 5 \Leftrightarrow \sqrt {{{\left( {1 + 2m} \right)}^2} + {{\left( { - 2 + m} \right)}^2}}  = 5 \Leftrightarrow {m^2} = 4 \Leftrightarrow m =  \pm 2\)

 Với \(m = 2 \Rightarrow M\left( {5;0} \right)\)

 Với \(m =  - 2 \Rightarrow M\left( { - 3; - 4} \right)\)

 Vậy ta có 2 điểm M thỏa mãn điều kiện đề bài.

c)  Do điểm N thuộc d nên ta có: \(N\left( {1 + 2n; - 2 + n} \right)\)

 Khoảng cách từ N đến trục hoành bằng giá trị tuyệt đối của tung độ điểm N. Do đó, khoảng cách tư N đến trục hoành bằng 3 khi và chỉ khi: \(\left| { - 2 + n} \right| = 3 \Leftrightarrow \left[ \begin{array}{l}n = 5\\n =  - 1\end{array} \right.\)

 Với \(n = 5 \Rightarrow N\left( {11;3} \right)\)

 Với \(n =  - 1 \Rightarrow N\left( { - 1; - 3} \right)\)

 Vậy có 2 điểm N thỏa mãn bài toán

13 tháng 3 2023

Ta có B(a;2-a) ; C(b;8-b)

Để tam giác ABC vuông cân tại A

\(\left\{{}\begin{matrix}\overrightarrow{AC}.\overrightarrow{AB}=\overrightarrow{0}\\\overrightarrow{AC}=\overrightarrow{AB}\end{matrix}\right.\) bạn thay vào giải hpt bằng p2 thế nhé 

13 tháng 3 2023

nó ra pt bậc 4 bạn ơi🥲

21 tháng 3 2017

\(M\in d\Rightarrow M\left(3-2t;1+3t\right)\)

\(\Rightarrow\)\(\overrightarrow{AM}=\left(-1-2t;1+3t\right)\)

\(\Rightarrow AM=\sqrt{\left(-1-2t\right)^2+\left(1+3t\right)^2}=5\)

\(\Leftrightarrow13t^2+10t-23=0\Rightarrow\left[{}\begin{matrix}t=1\\t=\dfrac{-23}{13}\end{matrix}\right.\)

\(+t=1\Rightarrow M\left(1;4\right)\)

\(+t=\dfrac{-23}{13}\Rightarrow M=\left(\dfrac{85}{13};\dfrac{-56}{13}\right)\)

vậy có 2 điểm M cần tìm.

NV
23 tháng 3 2022

Gọi d' là đường thẳng qua A và vuông góc d

\(\Rightarrow d'\) nhận (2;1) là 1 vtpt

Phương trình d':

\(2\left(x-4\right)+1\left(y-1\right)=0\Leftrightarrow2x+y-9=0\)

Hình chiếu vuông góc của A lên d là giao điểm d và d' có tọa độ là nghiệm:

\(\left\{{}\begin{matrix}x-2y+4=0\\2x+y-9=0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=\dfrac{14}{5}\\y=\dfrac{17}{5}\end{matrix}\right.\)