Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
(C): x2 + y2 + 2x + 2y - 1= 0
=> (x+1)2 +(y+1)2 =3 (1)
(C'): x2 + y2 -2x + 2y -7 =0
=> (x-1)2 +(y+1)2 =9 (2)
(1)(2) => (x-1)2 -(x+1)2 =6
<=> -4x =6 suy ra x= \(\frac{-3}{2}\)
Thay x vào (2) ta có : (y+1)2 = \(\frac{11}{4}\) suy ra y = -1 + \(\frac{\sqrt{11}}{2}\) hoặc y= -1- \(\frac{\sqrt{11}}{2}\)
(C) có tâm I(2;-1), bán kính R=\(\sqrt{6}\). Khoảng cách từ tâm I tới $\Delta$ là
$d=\dfrac{|2.2-(-1)|}{\sqrt{2^2+1}}=\sqrt{5}<R$ nên $\Delta$ cắt (C).
Gọi $l$ là độ dài dây cung thì
$$\dfrac{l}{2}=\sqrt{R^2-d^2}=1\Rightarrow l=2$$
\(\left\{{}\begin{matrix}mx-y=4\\x+my=-2\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}mx=y+4\\my=-2-x\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}mxy=y^2+4y\left(y\ne0\right)\\mxy=-2x-x^2\left(x\ne0\right)\end{matrix}\right.\).
Suy ra \(y^2+4y=-2x-x^2\Leftrightarrow x^2+y^2+4y+2x=0\).
a: |x-1|+|2y-1|=0
=>x-1=0 và 2y-1=0
=>x=1 và y=1/2
b: |1-2x|+|3-2y|=0
=>1-2x=0và 3-2y=0
=>x=1/2 và y=3/2
c: \(\left(x-1\right)^2+\left(2y-1\right)^2=0\)
\(\Leftrightarrow\left\{{}\begin{matrix}x-1=0\\2y-1=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=\dfrac{1}{2}\end{matrix}\right.\)
Ta có : -2a = -2 => a = 1
-2b = -2 => b = 1 => I(1; 1)
R2 = a2 + b2 – c = 12 + 12 – (-2) = 4 => R = 2
Bạn ghi đề sai, hoặc các đáp án đều sai, ko có đường tròn nào đi qua O(0;0) hết
1)Thấy: x=0;y=0 không phải là nghiệm của hệ.
\(\begin{cases}x^3-8x=y^3+2y\\x^2-3=3\left(y^2+1\right)\end{cases}\)
\(\Leftrightarrow\begin{cases}x^3-8x=y^3+2y\\x^2=3\left(y^2+2\right)\end{cases}\)
\(\Leftrightarrow\begin{cases}x^3-8x=y\left(y^2+2\right)\\x^2y=3y\left(y^2+2\right)\end{cases}\)
Trừ vế theo vế hai phương trình,đc:
\(x^3-8x-\frac{x^2y}{3}=0\Leftrightarrow y=\frac{3\left(x^3-8x\right)}{x^2}\)
\(\Leftrightarrow y=\frac{3\left(x^2-8\right)}{x}\).Thay \(y=\frac{3\left(x^2-8\right)}{x}\) vào pt 2 đc:
\(26x^4-426x^2-1728=0\)
\(\Leftrightarrow\begin{cases}x^2=9\\x^2=\frac{96}{13}\end{cases}\) dễ nhé