K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 2 2016

Ta có : 2x-y/x+y=2/3>> 3.

1 tháng 1 2016

|x-2|=x => x=1

|x-3,4|+|2,6-x|=0=> x=Can't Solve

23 tháng 5 2016

\(\frac{2x-y}{x+y}=\frac{2}{3}\Rightarrow\frac{2x-y}{2}=\frac{x+y}{3}=\frac{\left(2x-y\right)-\left(x+y\right)}{2-3}=2y-x\)

\(\Rightarrow2x-y=4y-2x\Rightarrow4x=5y\Rightarrow\frac{x}{y}=\frac{5}{4}\)

23 tháng 5 2016

Áp dụng công thức lớp 7 ; \(\frac{a}{b}\)\(\frac{c}{d}\) thì \(\frac{a}{c}\)\(\frac{b}{d}\)

thì \(\frac{2x-y}{2}\)\(\frac{x+y}{3}\)\(\frac{2x-y-\left(x+y\right)}{2-3}\)\(\frac{x-2y}{-1}\)=  - (x - 2y ) =  - x + 2y = 2y + (- x) = 2y - x

=> .....................................x/y = 5/4

Ta có:\(\frac{2x-y}{x+y}=\frac{2}{3}\)

\(\Rightarrow3\left(2x-y\right)=2\left(x+y\right)\)

\(\Rightarrow6x-3y=2x+2y\)

\(\Rightarrow4x=5y\)

\(\Rightarrow\frac{x}{y}=\frac{5}{4}\)

4 tháng 12 2016

Ta có: \(\frac{2x-y}{x+y}\)=\(\frac{2}{3}\)

=> (2x - y).3 = (x+y) .2

6x - 3y = 2x + 2y

6x - 2x = 3y + 2y

4x = 5y

=> \(\frac{x}{5}\)=\(\frac{y}{4}\)

Vậy tỉ số \(\frac{x}{y}\)=\(\frac{5}{4}\)

4 tháng 12 2016

\(\frac{2x-y}{x+y}=\frac{2}{3}\)

\(\Rightarrow3\left(2x-y\right)=2\left(x+y\right)\)

\(\Rightarrow6x-3y=2x+2y\)

\(\Rightarrow6x-2x=2y+3y\)

\(\Rightarrow4x=5y\)

\(\Rightarrow\frac{x}{y}=\frac{5}{4}\)

Vậy \(\frac{x}{y}=\frac{5}{4}\)

19 tháng 7 2016

Ta có : \(\frac{2x-y}{x+y}=\frac{2}{3}\Leftrightarrow3\left(2x-y\right)=2\left(x+y\right)\Leftrightarrow6x-3y=2x+2y\Leftrightarrow4x=5y\Leftrightarrow\frac{x}{y}=\frac{5}{4}\)

19 tháng 7 2016

\(\frac{2x-y}{x+y}=\frac{2}{3}=>\left(2x-y\right).3=\left(x+y\right).2=>6x-3y=2x+2y\)

\(=>6x-2x=2y-\left(-3y\right)=>6x-2x=2y+3y=>4x=5y=>\frac{x}{y}=\frac{5}{4}\)

Vậy tỉ số x/y=5/4

\(\frac{2x-y}{x+y}=\frac{2}{3}\)

\(\Rightarrow3\left(2x-y\right)=2\left(x+y\right)\)

\(\Rightarrow6x-3y=2x+2y\)

\(\Rightarrow6x-2x=3y+2y\)

\(\Rightarrow4x=5y\)

\(\Rightarrow\frac{x}{y}=\frac{5}{4}\)

1 tháng 5 2016

\(\Rightarrow\frac{2x+2y-3y}{x+y}=\frac{2}{3}\)

\(\Rightarrow\frac{2\left(x+y\right)-3y}{x+y}=\frac{2}{3}\)

\(\Rightarrow2-\frac{3y}{x+y}=\frac{2}{3}\)

\(\Rightarrow\frac{3y}{x+y}=2-\frac{2}{3}\)

\(\Rightarrow\frac{3y}{x+y}=\frac{4}{3}\)

\(\Rightarrow3y.3=\left(x+y\right).4\)

\(\Rightarrow9y=4x+4y\)

\(\Rightarrow5y=4x\)

\(\Rightarrow\frac{x}{y}=\frac{5}{4}\)

Bài 1: 

Ta có: \(3x=2y\)

nên \(\dfrac{x}{2}=\dfrac{y}{3}\)

mà x+y=-15

nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{x+y}{2+3}=\dfrac{-15}{5}=-3\)

Do đó:

\(\left\{{}\begin{matrix}\dfrac{x}{2}=-3\\\dfrac{y}{3}=-3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-6\\y=-9\end{matrix}\right.\)

Vậy: (x,y)=(-6;-9)

Bài 2: 

a) Ta có: \(\dfrac{x}{4}=\dfrac{y}{3}=\dfrac{z}{5}\)

mà x+y-z=20

nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\dfrac{x}{4}=\dfrac{y}{3}=\dfrac{z}{5}=\dfrac{x+y-z}{4+3-5}=\dfrac{20}{2}=10\)

Do đó:

\(\left\{{}\begin{matrix}\dfrac{x}{4}=10\\\dfrac{y}{3}=10\\\dfrac{z}{5}=10\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=40\\y=30\\z=50\end{matrix}\right.\)

Vậy: (x,y,z)=(40;30;50)