Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Trường hợp 1: m=0
Phương trình sẽ là:
\(0x^2-2\cdot\left(0-1\right)x+0-3=0\)
=>2x-3=0
hay x=3/2
=>Phương trình có đúng một nghiệm dương, còn hai trường hợp còn lại thì ko đúng
Trường hợp 2: m<>0
a:
Để phương trình có hai nghiệm trái dấu thì m(m-3)<0
hay 0<m<3
b:\(\Delta=\left(2m-2\right)^2-4m\left(m-3\right)\)
\(=4m^2-8m+4-4m^2+12m\)
=4m+4
Để phương trình có hai nghiệm dương phân biệt thì \(\left\{{}\begin{matrix}m>-1\\\dfrac{2\left(m-1\right)}{m}>0\\\dfrac{m-3}{m}>0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}-1< m< 0\\m>3\end{matrix}\right.\)
bạn thêm đấu bằng vào kết quả hộ mình nhé. sửa lại \(2\le m\le4\)
bài 1: bạn chỉ cần giải đen ta làm sao cho nó >=0 .Mình l;àm mẫu câu a nhé:
a) để phương trình có 2 no phân biệt thì \(\Delta\)>=0
\(\Leftrightarrow\left(2m-5\right)^2-\left(m-3\right)\left(5m-11\right)\) >=0
\(\Leftrightarrow-m^{^{ }2}+6m-8\ge0\)
\(\Leftrightarrow2< m< 4\)
vậy 2<m<4 thỏa mãn đề bài
1: TH1: m=0
=>-x-2=0
=>x=-2(loại)
TH2: m<>0
\(\text{Δ}=\left(2m-1\right)^2-4m\left(m-2\right)\)
=4m^2-4m+1-4m^2+8m
=4m+1
Đểphương trình có 2 nghiệm pb thì 4m+1>0
=>m>-1/4
2: TH1: m=1
Pt sẽ là -2x-1=0
=>x=-1/2(nhận)
TH2: m<>1
\(\text{Δ}=\left(-2m\right)^2-4\left(m-1\right)\left(m-2\right)\)
=4m^2-4(m^2-3m+2)
=-4(-3m+2)
=12m-8
Để phương trình có 1 nghiệm thì 12m-8=0
=>m=2/3
Có 2 nghiệm phân biệt cùng dấu dương
\(\hept{\begin{cases}\Delta>0\\P>0\end{cases}\Leftrightarrow\hept{\begin{cases}-2m^2+11m-5>0\\\frac{3\left(m-2\right)}{m-1}>0\end{cases}}}\)
ĐK
\(\hept{\begin{cases}\frac{1}{2}< m< 5\\m< 1haym>2\end{cases}\Leftrightarrow\frac{1}{2}< m< 1\left(hay\right)2< m< 5}\)
a)TH1: m=0
Phương trình trở thành : -2=0( vô lí nên loại th này)
TH2: m khác 0
Để pt có 2 nghiệm dương phương biệt thì:
\(\left\{{}\begin{matrix}\Delta>0\\\dfrac{-2m}{m}>0\\\dfrac{m-2}{m}>0\end{matrix}\right.\)(vô lý)
Vậy \(m\in\varnothing\)
b)x2+kx+1=0
Để pt có 2 nghiệm pb thì :
\(\left\{{}\begin{matrix}\Delta>0\\-k>0\\1>0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}k^2-4>0\\k< 0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\left[{}\begin{matrix}k< -2\\k>2\end{matrix}\right.\\k< 0\end{matrix}\right.\Leftrightarrow k< -2\)
Vậy k<-2