K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 7 2021

Xét: \(x^2\ge0\Rightarrow x^4+2x^2+1\ge x^4+x^2+1=y^2\)

\(\Rightarrow\left(x^2+1\right)^2\ge y^2=x^4+x^2+1>x^4=\left(x^2\right)^2\)

Vậy số chính phương \(y^2\)bị kẹp giữa 2 số chính phương liên tiếp là \(\left(x^2\right)^2\)\(\left(x^2+1\right)^2\)

Có xảy ra dấu "=" tại \(\left(x^2+1\right)^2\)nên trường hợp duy nhất cho y chính là \(y^2=\left(x^2+1\right)^2\)

Khi đó \(x^4+x^2+1=\left(x^2+1\right)^2\Leftrightarrow x^4+x^2+1=x^4+2x^2+1\Leftrightarrow x=0\Rightarrow y^2=1\Rightarrow y=\pm1\)

Vậy nghiệm nguyên của phương trình là \(\left(0;1\right),\left(0;-1\right)\)

23 tháng 7 2020

\(4x^2+y^2=\left(2xy+1\right)^2\Leftrightarrow4x^2+y^2=4x^2y^2+4xy+1\Leftrightarrow\left(2x-y\right)^2-4x^2y^2=1\)

\(\Leftrightarrow\left(2x-y-2xy\right)\left(2x-y+2xy\right)=1\)

Đến đây ta có các trường hợp

\(\hept{\begin{cases}2x-y-2xy=1\\2x-y+2xy=1\end{cases}}\)và \(\hept{\begin{cases}2x-y-2xy=-1\\2x-y+2xy=-1\end{cases}}\)

Giải ra được \(\left(x;y\right)\in\left\{\left(0;1\right);\left(0;-1\right)\right\}\)

18 tháng 1 2018

Coi PT trên là phương trình bậc 2 ẩn x.

Ta có: x2-(y+1)x+(y2-y)=0

PT có nghiệm <=> \(\Delta\)>=0

                     <=>(y+1)2-4.1(y2-y)>=0

                      <=>-3y2+6y+1>=0

                       <=>\(\frac{3-2\sqrt{3}}{3}\le y\le\frac{3+2\sqrt{3}}{3}\)   (Đưa về PT tích)

 Mà y nguyên

=>y E {0;1;2}

Với y=0 =>x=0

Với y=1 => x=2

Với y=2  => x=1

Vậy ...

Với y=1 =>

25 tháng 8 2019

ai trả lời hộ minh bài này vs mình đang cần gấp

19 tháng 3 2017

Đặt \(\hept{\begin{cases}x+y=a\\xy=b\end{cases}}\) thì ta có phương trình:

\(ab^2+a=3+b\Leftrightarrow a\left(b^2+1\right)=b+3\)

\(\Leftrightarrow a=\frac{b+3}{b^2+1}\). Nếu \(b=3\) vô nghiệm thì xét \(b\ne3\)

Khi đó: \(a=\frac{b+3}{b^2+1}\Leftrightarrow a\left(b-3\right)=\frac{b^2-9}{b^2+1}\)\(=\frac{b^2+1-10}{b^2+1}\)

\(=\frac{b^2+1}{b^2+1}-\frac{10}{b^2+1}=1-\frac{10}{b^2+1}\)

Suy ra \(b^2+1\inƯ\left(10\right)=....\)

Tự làm nốt nhá, trở thành bài lớp 6 r` :)

19 tháng 3 2017

Mơn nhìu ạ

10 tháng 1 2016

\(=\frac{1}{2}\)