Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Vì: n + 1; n + 3; n + 7; n + 9; n + 13 và n + 15 đều là số nguyên tố. Suy ra: n phải là số chẵn (2 là số nguyên tố chẵn duy nhất)
Nếu n = 2 thì n + 13 = 15 là hợp số (loại)
Nếu n = 4 thì n + 1 = 5; n + 3 = 7; n + 9 = 11; n + 13 = 17; n + 15 = 19 đều là các số nguyên tố (nhận)
Vậy: Số tự nhiên nhỏ nhất để n + 1; n + 3; n + 7; n + 9; n + 13 và n + 15 đều là số nguyên tố là: n = 4
Câu hỏi của Nguyễn Lịch Tiểu - Toán lớp 6 - Học toán với OnlineMath
Em tham khảo tại link trên nhé.
Trước hết, ta chứng minh rằng với mọi số n lớn hơn hoặc bằng 5, điều kiện của đề bài không thỏa mãn.
Thật vậy, với \(n\ge5\), ta có:
+ Nếu n = 5k thì n + 15 chia hết 5. Vậy n + 15 là hợp số.
+ Nếu n = 5k + 1 thì n + 9 chia hết cho 5. Vậy n + 9 là hợp số.
+ Nếu n = 5k + 2 thì n + 3 chia hết cho 5. Vậy n + 3 là hợp số.
+ Nếu n = 5k + 3 thì n + 7 chia hết cho 5. Vậy n + 7 là hợp số.
+ Nếu n = 5k + 4 thì n + 1 chia hết cho 5. Vậy n + 1 là hợp số.
Vậy n < 5.
Để n + 1, n + 3, n + 7, n + 9, n + 13 và n + 15 đều là số nguyên tố thì n phải là số chẵn. Vì nếu n là số lẻ thì các số trên là số chẵn lớn hơn 2, và là hợp số.
Vậy n = 2 hoặc n = 4.
Với n = 2, ta thấy ngay n + 7 = 2 + 7 = 9, là hợp số.
Với n = 4, ta có các số 5, 7, 11, 13, 17, 19 đều là số nguyên tố.
Vậy số cần tìm là n = 4.
Thử n đến 3 không thỏa mãn
* n=4 thì các số là các số nguyên tố
*Xét n >4 thì các số đó đều lớn hơn 5
Xét các số dư khi chia n cho 5
+ Dư 1 thì n+ 9\(⋮\)5n+9\(⋮\)5
+Dư 2 thì n+13 \(⋮\)5n+13\(⋮\)5
+ Dư 3 thì n+7 \(⋮\)5n+7\(⋮\)5
+ Dư 4 thì n+1 \(⋮\)5n+1\(⋮\)5
+ Dư 0 thì n+15\(⋮\)5n+15\(⋮\)5
Không TM trường hợp nào cả
=>n = 4 là giá trị cần tìm