Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: TH1: p=3
=>p+14=17 và 4p+7=4*3+7=12+7=19(nhận)
TH2: p=3k+1
=>p+14=3k+15=3(k+5)
=>Loại
TH3: p=3k+2
4p+7=4(3k+2)+7=12k+8+7
=12k+15
=3(4k+5) chia hết cho 3
=>Loại
b: TH1: p=5
=>p+6=11; p+12=17; p+8=13; p+24=29
=>NHận
TH2: p=5k+1
=>p+24=5k+25=5(k+5)
=>Loại
TH3: p=5k+2
p+8=5k+10=5(k+2) chia hết cho 5
=>Loại
TH4: p=5k+3
p+12=5k+15=5(k+3)
=>loại
TH5: p=5k+4
=>p+6=5k+10=5(k+2)
=>Loại
a, Th1 : P = 2 => P + 10 = 12 chia hết cho 2 => P là hợp số < Loại >
Th2 : P > 2 => P sẽ có dạng là : 3k ; 3k +1 ; 3k + 2 ( k thuộc N*)
+, Với P = 3k => P = 3 ( P là SNT ) => P + 10 = 13 ; P + 14 = 17 , là SNT < TM >
+ Với P = 3k + 1 => P + 14 = 3k + 1 + 14 = 3k + 15 = 3(k+5) chia hết cho 3 => là hợp số < Loại >
+ Với P = 3k +2 => P + 10 = 3k + 2 + 10 = 3k + 12 = 3(k+4) chia hết cho 3 => là hợp số < Loại >
Vậy P = 3
b, Tương tự
a) Với p=2 => p+10=12 không là số nguyên tố (loại)
Với p=3 => p+10=13 và p+14=17 là các số nguyên tố (thỏa mãn)
p là số nguyên tố lớn hơn hoặc bằng 3
=> p có dạng 3k+1 ; 3k+2 ( k thuộc N*)
Với p=3k+1 => p+14=3k+15 chia hết cho 3 (loại)
Với p=3k+2 => p+10=3k+12 chia hết cho 3 (loại)
Vậy p=3.
a) Nếu p =2 thì p+10= 12; p+14= 16 ( loại)
Vì p là số nguyên tố nên p có dạng 3k; 3k+1; 3k+2
Nếu p =3k thì p = 3 ( vì p là số nguyên tố) khi đó: p+10 = 13; p+14=17
Nếu p=3k+2 thì p+10= 3k+2+10= 3k+12= 3( k+4) ( vì 3 chia hết cho 3 nên 3(k+4) chia hết cho 3=> p+10 là hợp số trái với đề bài)
Nếu p= 3k+1 thì = 3k+1+14= 3k+15= 3(k+5) (vì...................................................................................................................)
Vậy.......
Chỗ vì thì bn vì như dòng trên nha, còn phần b làm tương tự
đặt 2n + 34 = a^2
34 = a^2-n^2
34=(a-n)(a+n)
a-n thuộc ước của 34 là { 1; 2; 17; 34} và a-n . Ta có bảng sau ( mik ko bt vẽ)
=> a-n 1 2
a+n 34 17
Mà tổng và hiệu 2 số nguyên cùng tính chẵn lẻ
Vậy ....
Ta cóS = 14 +24 +34 +···+1004 không là số chính phương.
=> S= (1004+14).100:2=50 900 ko là SCP
a) Vì k là số tự nhiên nên :
- Nếu k = 0 thì 7 . k = 0, không phải số nguyên tố.
- Nếu k = 1 thì 7 . k = 7, là số nguyên tố.
- Nếu k \(\ge\) 2 thì 7 . k \(\in\) B(7), không phải số nguyên tố.
Vậy k = 1 thỏa mãn đề bài.
a) Điều kiện: k>0
Số nguyên tố là số có hai ước tự nhiên 1 và chính nó.
7k có các ước: 1,k và 7 (vẫn còn nếu k là hợp số)
Buộc k phải bằng 1 để thõa mãn yêu cầu đề bài
b) Từ đề trên thì chắc chắn a không là số chẵn.
Nếu k có dạng 3q thì:
+ k+6 chia hết cho 3 (loại)
Nếu k có dạng 3q+1 thì
+ k+14 = 3q + 15 chia hết cho 3 (loại)
Nếu k có dạng 3q+2 (>5)thì:
+ Nếu q chẵn thì 3q +2 chia hết cho 2 => k chia hết cho 2(loại)
+ Nếu q là 1 hợp số q có thể chia hết cho 3,5,7,9 (1)
Như vậy thì một trong các số trên đề sẽ là hợp số
Vậy q là 1 số nguyên tố khác 3,5,7 (do 1) và q cũng có thể bằng 1
=> k=3q+2 (với q bằng 1 và q là các số nguyên tố khác 3,5,7)
a) do p là số nguyên tố => p lớn hơn hoặc bằng 2
xét p = 2 => p + 2 = 4 (ko là số nguyên tố) ; p+10 = 12 (ko là số nguyên tố)
xét p = 3 => p + 2 = 5 (là số nguyên tố) ; p + 10 = 13 (là số nguyên tố)
=> p = 3 thỏa mãn đề bài
còn lại tương tự nhé!!
t i c k nhé!! 45436457457568658797690807805688568568567467476856845765
b) => p = 3 thỏa mãn đề bài
c) ; d) bn vẫn cứ xét bắt đầu từ 2 rồi lên là sẽ tìm ra!!
654745768765876968987070789078976958567845745745745