Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt \(\hept{\begin{cases}x+y=a\\xy=b\end{cases}}\) thì ta có phương trình:
\(ab^2+a=3+b\Leftrightarrow a\left(b^2+1\right)=b+3\)
\(\Leftrightarrow a=\frac{b+3}{b^2+1}\). Nếu \(b=3\) vô nghiệm thì xét \(b\ne3\)
Khi đó: \(a=\frac{b+3}{b^2+1}\Leftrightarrow a\left(b-3\right)=\frac{b^2-9}{b^2+1}\)\(=\frac{b^2+1-10}{b^2+1}\)
\(=\frac{b^2+1}{b^2+1}-\frac{10}{b^2+1}=1-\frac{10}{b^2+1}\)
Suy ra \(b^2+1\inƯ\left(10\right)=....\)
Tự làm nốt nhá, trở thành bài lớp 6 r` :)
Ta có \(\left(x+y\right)^3=\left(x-y-6\right)^2\left(1\right)\)
Vì x,y nguyên dương nên
\(\left(x+y\right)^3>\left(x+y\right)^2\)kết hợp (1) ta được:
\(\left(x-y-6\right)^2>\left(x+y\right)^2\Leftrightarrow\left(x+y\right)^2-\left(x-y-6\right)^2< 0\Leftrightarrow\left(x-3\right)\left(y+3\right)< 0\)
Mà y+3 >0 (do y>0)\(\Rightarrow x-3< 0\Leftrightarrow x< 3\)
mà \(x\inℤ^+\)\(\Rightarrow x\in\left\{1;2\right\}\)
*x=1 thay vào (1) ta có:
\(\left(1+y\right)^3=\left(1-y-6\right)^2\Leftrightarrow y^3+3y^2+3y+1=y^2+10y+25\Leftrightarrow\left(y-3\right)\left(y^2+5y+8\right)=0\)
mà \(y^2+5y+8=\left(y+\frac{5}{2}\right)^2+\frac{7}{4}\ge\frac{7}{4}>0\)
\(\Rightarrow y-3=0\Leftrightarrow y=3\inℤ^+\)
*y=2 thay vào (1) ta được:
\(\left(2+y\right)^3=\left(2-y-6\right)^2\Leftrightarrow y^3+6y^2+12y+8=y^2+8y+16\Leftrightarrow y^3+5y^2+4y-8=0\)
Sau đó cm pt trên không có nghiệm nguyên dương.
Vậy x=1;y=3
Tu de bai suy ra 2y+2x=xy<=>...<=>y(2-x)= -2x<=>y=2x/(x-2)<=>y=(2x-4+4)/(x-2)<=>y=2+4/(x-2)
vi x la so nguyen Dưỡng nen x-2 la so nguyen duong va la ước cua 4 => x-2 =1 hoặc x-2= 4 => x=3 hoac x=6
Voi x=3 => y= 6
voi x=6=> y=3
vay cac cap so nguyen duong (x;y) can tim la (3;6); (6;3)
Có: \(x^5+y^2=xy^2+1\)
<=> \(x^5-1=y^2\left(x-1\right)\)(1)
TH1: x = 1
=> \(1^2+y^2=1.y^2+1\) đúng với mọi y
TH2: \(x\ne1\)
(1) <=> \(y^2=x^4+x^3+x^2+x+1\)
<=> \(4y^2=4x^4+4x^3+4x^2+4x+4\)
Có:
+) \(4x^4+4x^3+4x^2+4x+4=4x^4+4x^3+x^2+2x^2+x^2+4x+4\)
\(=\left(2x^2+x\right)^2+2x^2+\left(x+2\right)^2>\left(2x^2+x\right)^2\)
=> \(\left(2y\right)^2>\left(2x^2+x\right)^2\)
+) \(4x^4+4x^3+4x^2+4x+4\le\left(2x^2+x+2\right)^2\)
=> \(\left(2y\right)^2\le\left(2x^2+x+2\right)^2\)
=> \(\left(2x^2+x\right)^2< \left(2y\right)^2\le\left(2x^2+x+2\right)^2\)
TH1: \(\left(2y\right)^2=\left(2x^2+x+2\right)^2\)
=> \(4x^4+4x^3+4x^2+4x+4=4x^4+x^2+4+4x^3+8x^2+4x\)
<=> x = 0
=> \(y=\pm1\)
TH2: \(\left(2y\right)^2=\left(2x^2+x+1\right)^2\)
=> \(4x^4+4x^3+4x^2+4x+4=4x^4+x^2+1+4x^3+4x^2+2x\)
<=> \(2x+3-x^2=0\)
<=> \(\orbr{\begin{cases}x=-1\\x=3\end{cases}}\)
Với x = -1 => \(y=\pm1\)
Với x = 3 => \(y=\pm11\)
Kết luận:...
Để cho gọn, đặt {x2=ay2=b
(a+4b+28)2−17a2−17b2=238b+833
\(\Leftrightarrow\)a2+16b2+784+8ab+56a+224b−17a2−17b2=238b+833
\(\Leftrightarrow\)16a2+b2+49−8ab−56a+14b=0
\(\Leftrightarrow\)(4a−b−7)2=0 ⇔4a−b−7=0⇔4x2−y2−7=0
\(\Leftrightarrow\)(2x−y)(2x+y)=7
Do 2x+y>2x−y với mọi x, y nguyên dương và 2x+y>0 với mọi x, y nguyên dương
\(\Rightarrow\){2x−y=12x+y=7 \(\Rightarrow\){x=2y=3
Vậy pt có cặp nghiệm nguyên dương duy nhất (x;y)=(2;3)
#Shinobu Cừu
\(x^2-xy+y^2=x+y+3\)
\(\Leftrightarrow2x^2-2xy+2y^2-2x-2y+2=8\)
\(\Leftrightarrow\left(x-y\right)^2+\left(x-1\right)^2+\left(y-1\right)^2=8=0+4+4\)
\(8\)có cách phân tích duy nhất thành tổng của \(3\)số chính phương là \(0+4+4\)nên ta có các trường hợp sau:
- \(\hept{\begin{cases}\left(x-y\right)^2=0\\\left(x-1\right)^2=4\\\left(y-1\right)^2=4\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=y=3\\x=y=-1\end{cases}}\)
- \(\hept{\begin{cases}\left(x-y\right)^2=4\\\left(x-1\right)^2=0\\\left(y-1\right)^2=4\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=1,y=3\\x=1,y=-1\end{cases}}\)
- \(\hept{\begin{cases}\left(x-y\right)^2=4\\\left(x-1\right)^2=4\\\left(y-1\right)^2=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=3,y=1\\x=-1,y=1\end{cases}}\)
x2 - xy + y2 = x + y + 3
<=> x2 - ( y + 1 )x + y2 - y - 3 = 0 (*)
Xét (*) ta có : Δ = b2 - 4ac = [ -( y + 1 ) ]2 - 4( y2 - y - 3 )
= y2 + 2y + 1 - 4y2 + 4y + 12 = -3y2 + 6y + 13
(*) có nghiệm <=> Δ ≥ 0 <=> -3y2 + 6y + 13 ≥ 0 <=> \(\frac{3-4\sqrt{3}}{3}\le y\le\frac{3+4\sqrt{3}}{3}\)
Vì y nguyên dương => y ∈ { 1 ; 2 ; 3 }
Với y = 1 (*) trở thành x2 - 2x - 3 = 0 có a - b + c = 0 nên có hai nghiệm x1 = -1 (ktm) ; x2 = -c/a = 3 (tm)
Với y = 2 (*) trở thành x2 - 3x - 1 = 0 có Δ = 13 không là SCP nên không có nghiệm nguyên
Với y = 3 (*) trở thành x2 - 4x + 3 = 0 có a + b + c = 0 nên có hai nghiệm x1 = 1 (tm) ; x2 = c/a = 3 (tm)
Vậy ( x ; y ) = { ( 3 ; 1 ) , ( 1 ; 3 ) , ( 3 ; 3 ) }