K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 9 2021

ai đó giúp mình với :((

https://h7.net/hoi-dap/toan-10/giai-phuong-trinh-1-2-3-can-x-x-2-can-x-can-1-x--faq242766.html

Xem ở link này nhé(mik gửi cho)

Học tốt!!!!!!!!!!!

NV
12 tháng 4 2020

Bài 2:

ĐKXĐ: \(x\ge3\)

\(\Leftrightarrow3\sqrt{\frac{x-3}{x+3}}+m\ge2\sqrt[4]{\frac{x-3}{x+3}}\)

Đặt \(\sqrt[4]{\frac{x-3}{x+3}}=\sqrt[4]{1-\frac{6}{x+3}}=t\Rightarrow0\le t< 1\)

BPT đã cho trở thành:

\(3t^2+m\ge2t\Leftrightarrow m\ge-3t^2+2t\)

Để BPT có nghiệm

\(\Leftrightarrow m\ge\min\limits_{[0;1)}\left(-3t^2+2t\right)\)

Xét \(f\left(t\right)=-3t^2+2t\) trên \([0;1)\)

Ta có: \(a=-3< 0\) ; \(-\frac{b}{2a}=\frac{1}{3}\in[0;1)\)

\(f\left(0\right)=0\) ; \(f\left(\frac{1}{3}\right)=\frac{1}{3}\) ; \(f\left(1\right)=-1\)

\(\Rightarrow f\left(t\right)>-1;\forall t\in[0;1)\)

\(\Rightarrow\) Để BPT đã cho có nghiệm thì \(m>-1\)

\(\Rightarrow\) Giá trị nguyên nhỏ nhất là \(m=0\)

NV
12 tháng 4 2020

1/ ĐKXĐ: \(x\ge1\)

\(\Leftrightarrow\sqrt{\frac{x-1}{x}}-2\sqrt[4]{\frac{x-1}{x}}+m\le0\)

Đặt \(\sqrt[4]{\frac{x-1}{x}}=t\Rightarrow0\le t< 1\)

BPT trở thành:

\(t^2-2t+m\le0\Leftrightarrow m\le-t^2+2t\)

Để BPT có nghiệm \(\Leftrightarrow m\le\max\limits_{[0;1)}\left(-t^2+2t\right)\)

Xét \(f\left(t\right)=-t^2+2t\) trên \([0;1)\)

\(-\frac{b}{2a}=1\in[0;1)\) ; \(a=-1< 0\Rightarrow f\left(t\right)_{max}=f\left(0\right)=0\)

\(\Rightarrow m\le0\)thì BPT có nghiệm

AH
Akai Haruma
Giáo viên
4 tháng 1 2021

Bài 2. 

ĐK: $x\geq \frac{-11}{2}$

$x+\sqrt{2x+11}=0\Leftrightarrow x=-\sqrt{2x+11}$

\(\Rightarrow \left\{\begin{matrix} x\leq 0\\ x^2=2x+11\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} x\leq 0\\ x^2-2x-11=0(*)\end{matrix}\right.\)

\(\Delta'(*)=12\)

\(\Rightarrow x=1\pm \sqrt{12}=1\pm 2\sqrt{3}\). Với điều kiện của $x$ suy ra $x=1-2\sqrt{3}$

$\Rightarrow a=1; b=-2\Rightarrow ab=-2$

 

AH
Akai Haruma
Giáo viên
4 tháng 1 2021

Bài 1. 

Đặt $x^2+2x=t$ thì PT ban đầu trở thành:

$t^2-t-m=0(1)$

Để PT ban đầu có 4 nghiệm phân biệt thì:

Trước tiên PT(1) cần có 2 nghiệm phân biệt. Điều này xảy ra khi $\Delta (1)=1+4m>0\Leftrightarrow m> \frac{-1}{4}(*)$

Với mỗi nghiệm $t$ tìm được, thì PT $x^2+2x-t=0(2)$ cần có 2 nghiệm $x$ phân biệt. 

Điều này xảy ra khi $\Delta '(2)=1+t>0\Leftrightarrow t>-1$

Vậy ta cần tìm điều kiện của $m$ để (1) có hai nghiệm $t$ phân biệt đều lớn hơn $-1$

Điều này xảy ra khi \(\left\{\begin{matrix} (t_1+1)(t_2+1)>0\\ t_1+t_2+2>0\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} t_1t_2+t_1+t_2+1>0\\ t_1+t_2+2>0\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} -m+1+1>0\\ 1+2>0\end{matrix}\right.\Leftrightarrow m< 2(**)\)

Từ $(*); (**)\Rightarrow \frac{-1}{4}< m< 2$

b) 

Để pt ban đầu vô nghiệm thì PT(1) vô nghiệm hoặc có 2 nghiệm $t$ đều nhỏ hơn $-1$

PT(1) vô nghiệm khi mà $\Delta (1)=4m+1<0\Leftrightarrow m< \frac{-1}{4}$

Nếu PT(1) có nghiệm thì $t_1+t_2=1>-2$ nên 2 nghiệm $t$ không thể cùng nhỏ hơn $-1$

Vậy PT ban đầu vô nghiệm thì $m< \frac{-1}{4}$

c) Để PT ban đầu có nghiệm duy nhất thì:

\(\left\{\begin{matrix} \Delta (1)=1+4m=0\\ \Delta' (2)=1+t=0\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} m=-\frac{1}{4}\\ t=-1\end{matrix}\right.\).Mà với $m=-\frac{1}{4}$ thì $t=\frac{1}{2}$ nên hệ trên vô lý. Tức là không tồn tại $m$ để PT ban đầu có nghiệm duy nhất. 

d) 

Ngược lại phần b, $m\geq \frac{-1}{4}$

e) 

Để PT ban đầu có nghiệm kép thì PT $(2)$ có nghiệm kép. Điều này xảy ra khi $\Delta' (2)=1+t=0\Leftrightarrow t=-1$

$t=-1\Leftrightarrow m=(-1)^2-(-1)=2$

 

 

NV
17 tháng 9 2019

ĐKXĐ: \(x>1\)

\(\Leftrightarrow x+\left(x-1\right)=5-m\)

\(\Leftrightarrow2x=6-m\Rightarrow x=\frac{6-m}{2}\)

Để pt đã cho có nghiệm thì:

\(\frac{6-m}{2}>1\Rightarrow6-m>2\Rightarrow m< 4\)

29 tháng 7 2016

a) \(x+\sqrt{3x^2+1}=m\)

<=> \(\sqrt{3x^2+1}=m-x\)

ta thẩ : \(\sqrt{3x^2+1}\ge0\)=> \(m-x\ge0\)

<=> \(m\ge x\)

4 tháng 9 2021

ai đó giúp mình với mình còn 3 tiếng nữa là tới hạn nộp bài rồi :(((

NV
15 tháng 5 2020

ĐKXĐ: \(-1\le x\le1\)

Đặt \(\sqrt{1+x}+\sqrt{1-x}=t\Rightarrow2\sqrt{1-x^2}=t^2-2\)

\(\sqrt{1+x}+\sqrt{1-x}\le\sqrt{2\left(1+x+1-x\right)}=2\Rightarrow t\le2\)

\(\sqrt{1+x}+\sqrt{1-x}\ge\sqrt{1+x+1-x}=\sqrt{2}\Rightarrow t\ge\sqrt{2}\)

Pt trở thành:

\(2\left(t^2-2\right)+t=m\) có nghiệm với \(t\in\left[\sqrt{2};2\right]\)

\(\Leftrightarrow f\left(t\right)=2t^2+t-4=m\)

\(-\frac{b}{2a}=-\frac{1}{4}< \sqrt{2}\Rightarrow f\left(t\right)\) đồng biến

\(\Rightarrow f\left(\sqrt{2}\right)\le f\left(t\right)\le f\left(2\right)\Rightarrow\sqrt{2}\le f\left(t\right)\le6\)

\(\Rightarrow\) Để pt có nghiệm thì \(\sqrt{2}\le m\le6\)