Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Kẻ \(AN\perp BC\) tại \(N\). \(\Rightarrow AN\) không đổi.
Xét tứ giác \(AKMJ\) có : \(\hept{\begin{cases}\widehat{KAM}=90^o\\\widehat{AKM}=90^o\\\widehat{AJM}=90^o\end{cases}}\left(gt\right)\)
\(\Rightarrow AKMJ\) là hình chữ nhật
\(\Rightarrow MJ^2+MK^2=KJ^2=AM^2\) ( định lý Pytago )
Ta có BĐT sau : \(a^2+b^2\ge\frac{\left(a+b\right)^2}{2}\)
Do đó với ba điểm \(A,M,H\) thì :
\(AM^2+MH^2\ge\frac{\left(AM+MH\right)^2}{2}\ge\frac{AH^2}{2}\ge\frac{AN^2}{2}\) không đổi
Hay : \(MH^2+MJ^2+MK^2\ge\frac{AN^2}{2}\)
Dấu "=" xảy ra \(\Leftrightarrow M\) là trung điểm của đường cao \(AN\)
do mk ko là dân toán nên cx không chắc là đúng, sai đâu mog mn bỏ qua
\(m^3+n^3+15mn=125\)
<=> \(m^3+n^3-125+15mn=0\)
<=> \(\left(m+n\right)^3-3mn\left(m+n\right)-5^3+15mn=0\)
<=> \(\left(m+n-5\right)\left[\left(m+n\right)^2+5\left(m+n\right)+5^2\right]-3mn\left(m+n-5\right)=0\)
<=> \(\left(m+n-5\right)\left(m^2+n^2+5m+5n-mn+25\right)=0\)
TH1: \(m+n-5=0\)
<=> \(m+n=5\)
bạn làm tiếp nhé
TH2: \(m^2+n^2-mn+5\left(m+n\right)+25=0\)
Áp dụng AM-GM ta có:
\(m^2+n^2-mn\ge2\sqrt{m^2.n^2}-mn=2mn-mn=mn\)
Khi đó:
\(m^2+n^2-mn+5\left(m+n\right)+25\)
\(\ge mn+5\left(m+n\right)+25\)
Do m,n là các số nguyên dương nên: \(mn+5\left(m+n\right)+25\ge25\)
=> trường hợp này vô lí