Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(3^n\)\(+\)\(6\)
Với n nguyên dương ta có :
\(3^n\)chia hết cho 3
6 chia hết cho 3
\(\Rightarrow\)\(3^n\)\(+\)\(6\)chia hết cho 3
\(\Leftrightarrow\)\(3^n\)không chia hết cho 3
\(\Leftrightarrow\)\(n=0\)
Tìm tất cả các số tự nhiên n để :
a/ n^2 +12n là số nguyên tố
b/ 3^n +6 là số nguyên tố
Với n = 0, ta có \(A=3^n+6=3^0+6=7\) là một số nguyên tố.
Với \(n>0\), ta có \(A=3^n+6=3\left(3^{n-1}+2\right)\)
Ta thấy A 3 0 mà A chia hết cho 3 nên A không là số nguyên tố.
Vậy ta tìm được duy nhất giá trị n = 0 thỏa mãn điều kiện đề bài.
với n=0 thì ta có 3^n+6 =3^0+6=1+6=7 là số nguyên tố
với n khác 0 thì ta có 3^n chia hết cho 3;6 chia hết cho 3
=>3^n+6 chia hết cho 3
3^n+6 > 3
số 3^n+6 là hợp số vì ngoài ước 1 và chính nó còn có ước là 3
=>với n=0 thì 3^n+6 là số nguyên tó
tick nhé
A = 3n^3 - 5n^2 + 3n - 5
= 3n(n^2 + 1) - 5(n^2 + 1)
= (3n - 5)(n^2 + 1)
A phân tích được thành tích của 2 số nguyên là (3n-5) và (n^2 + 1)
A là số nguyên tố thì có 2 trường hợp:
TH1: 3n-5 = 1 <=> n = 2
khi đó A = 5 thỏa mãn
TH2: n^2 + 1 = 1 <=> n = 0
khi đó: A = -5 không thỏa mãn
Kết luận: n=2
P/s:Bn tham khảo nha
3n là số nguyên tố khi và chỉ khi n bằng 1. ( vì nếu n lớn hơn 1 thì 3n chia hết cho 3 , không thể là số nguyên tố )