Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Do \(2n+1\) và \(3n+1\) là các số chính phương dương nên tồn tại các số nguyên dương a,b sao cho \(2n+1\)\(=a^2\) và \(3n+1=b^2\). Khi đó ta có:
\(2n+9=25.\left(2n+1\right)-16.\left(3n+1\right)=25a^2-16b^2=\left(5a-4b\right).\left(5a+4b\right)\)
Do \(2n+9\) là nguyên tố,\(5a+4b>1\) và \(5a+4b>5a-4b\) nên ta phải có \(5a-4b=1\), tức là: \(b=\dfrac{5a-1}{4}\)
\(\Rightarrow\) ta có: \(\left\{{}\begin{matrix}2n+1=a^2\left(1\right)\\3n+1=\dfrac{\left(5a-1\right)^2}{16}\left(2\right)\end{matrix}\right.\)
Từ (1) : \(2n+1=a^2\Rightarrow n=\dfrac{a^2-1}{2}\) và a > 1 ( do n>0)
Thay vào (2): \(\dfrac{3.\left(a^2-1\right)}{2}+1=\dfrac{\left(5a-1\right)^2}{16}\) => (a - 1).(a - 9) = 0
=> a = 9. Từ đó ta có n = 40
Vậy duy nhất một giá trị n thỏa mãn yêu cầu đề bài là : n = 40
\(A=2n:\frac{3n+1}{3}=2n.\frac{3}{3n+1}=\frac{6n}{3n+1}=\frac{6n+2-2}{3n+1}=\frac{2\left(3n+1\right)-2}{3n+1}\)
\(=\frac{2\left(3n+1\right)}{3n+1}-\frac{2}{3n+1}=2-\frac{2}{3n+1}\)
A nguyên <=> \(\frac{2}{3n+1}\) nguyên <=> 2 chia hết cho 3n+1
<=>\(3n+1\inƯ\left(2\right)=\left\{-2;-1;1;2\right\}\)
<=>\(3n\in\left\{-3;-2;0;1\right\}\)
<=>\(n\in\left\{-1;\frac{-2}{3};0;\frac{1}{3}\right\}\)
Vì n nguyên nên \(n\in\left\{-1;0\right\}\)
A=\(=\frac{2n.3}{3n+1}=\frac{2.3n+2-2}{3n+1}=2-\frac{2}{3n+1}.\)
3n+1=+-1,+-2
n=0
Toán lớp 6Phân tích thành thừa số nguyên tố
Đinh Tuấn Việt 20/05/2015 lúc 22:51
Theo đề bài ta có:
a = p1m . p2n $\Rightarrow$⇒ a3 = p13m . p23n.
Số ước của a3 là (3m + 1).(3n + 1) = 40 (ước)
$\Rightarrow$⇒ m = 1 ; n = 3 hoặc m = 3 ; n = 1
Số a2 = p12m . p22n có số ước là [(2m + 1) . (2n + 1)] (ước)
-Với m = 1 ; n = 3 thì a2 có (2.1 + 1) . (2.3 + 1) = 3 . 7 = 21 (ước)
-Với m = 3 ; n = 1 thì a2 có (2.3 + 1) . (2.1 + 1) = 7 . 3 = 21 (ước)
Vậy a2 có 21 ước số.
Đúng 4 Yêu Chi Pu đã chọn câu trả lời này.
nguyên 24/05/2015 lúc 16:50
Theo đề bài ta có:
a = p1m . p2n $$
a3 = p13m . p23n.
Số ước của a3 là (3m + 1).(3n + 1) = 40 (ước)
$$
m = 1 ; n = 3 hoặc m = 3 ; n = 1
Số a2 = p12m . p22n có số ước là [(2m + 1) . (2n + 1)] (ước)
-Với m = 1 ; n = 3 thì a2 có (2.1 + 1) . (2.3 + 1) = 3 . 7 = 21 (ước)
-Với m = 3 ; n = 1 thì a2 có (2.3 + 1) . (2.1 + 1) = 7 . 3 = 21 (ước)
Vậy a2 có 21 ước số.
Đúng 0
Captain America
Lời giải:
$A=n^4+3n^3+3n^2=n^2(n^2+3n+3)$
Để $A$ là scp thì $n^2+3n+3$ là scp.
Đặt $n^2+3n+3=x^2$ với $x$ tự nhiên.
$\Rightarrow 4n^2+12n+12=4x^2$
$\Rightarrow (2n+3)^2+3=4x^2$
$\Rightarrow 3=(2x)^2-(2n+3)^2=(2x-2n-3)(2x+2n+3)$
Đến đây là dạng PT tích cơ bản rồi. Bạn có thể tự xét TH để giải.
\(P=3n^3-7n^2+3n+6\)
\(=3n^3+2n^2-9n^2-6n+9n+6\)
\(=n^2\left(3n+2\right)-3n\left(3n+2\right)+3\left(3n+2\right)\)
\(=\left(3n+2\right)\left(n^2-3n+3\right)\)
để p là nguyên tố thì 3n+2 hoặc n2-3n+3 phải bằng 1 (nếu cả hai tích số đều lớn hơn 1 => p là hợp số, trái với đầu bài)
*3n+2=1=>n=-1/3
*n2-3n+3=1<=>n2-3n+2=0
\(\Leftrightarrow n^2-2\times\frac{3}{2}n+\frac{9}{4}-\frac{1}{4}=0\)
\(\Leftrightarrow\left(n-\frac{3}{2}\right)^2=\frac{1}{4}=\left(-\frac{1}{2}\right)^2=\left(\frac{1}{2}\right)^2\)
\(\orbr{\begin{cases}n-\frac{3}{2}=\frac{1}{2}\\n-\frac{3}{2}=-\frac{1}{2}\end{cases}\Leftrightarrow\orbr{\begin{cases}n=2\\n=1\end{cases}}}\)
nếu n= 2 thì (3n+2)(n2-3n+3)=(3.2+2).1=8 (ko phải số nguyên tố nên ta loại)
vậy n=1