Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a=n^2\left(n^4-n^2+2n+2\right)\)
A=\(n^2\left(n+1\right)\left(n^3-n^2+2\right)\)
A=\(n^2\left(n+1\right)\left(n^3+1-n^2+1\right)\)
A=\(n^2\left(n+1\right)^2\left(n^2-2n+2\right)\)
A=\(n^2\left(n+1\right)^2\left(n-1\right)+n^2\left(n+1\right)^2\)
nhận thấy n^2 -2n+2=\(\left(n-1\right)^2+1>\left(n-1\right)^2\)(1) (vì n>1)
vì n>1 => 2n>2
=>2n-2>0
=>\(n^2-\left(2n-2\right)< n^2\)
hay \(n^2-2n+2< n^2\)(2)
từ (1) và (2) =>\(\left(n-1\right)^2< n^2-2n+2< n^2\)
=>\(n^2-2n+2\)không là số chính phương
=> A= \(n^2\left(n+1\right)^2\left(n^2-2n+2\right)\) không là số chính phương
mình làm tắt chỗ nào không hiểu hỏi mình trả lời cho
Có: 2n+2017=a^2 (1) (a,b ∈N)
n+2019=b^2 (2)
Từ (1)⇒ a lẻ ⇒ a=2k+1 (k∈N)
(1) trở thành 2n+2017=(2k+1)^2
⇔ n+1008=2k(k+1)
Vì k(k+1) là tích 2 số tự nhiên liên tiếp ⇒ k(k+1) chia hết cho 2
⇒ n+1008 chia hết cho 4 ⇒n chia hết cho 4 (vì 1008 chia hết cho 4)
Vì n chia hết cho 4 ⇒ b lẻ ⇒b=2h+1 (h∈N)
(2) trở thành n+2019=(2h+1)^2
⇔n+2018=4(h^2+h) (3)
Có: n chia hết cho 4, 2018 không chia hết cho 4
⇒ n+2018 không chia hết cho 4
mà 4(h^2+h) chia hết cho 4
Nên (3) vô lý
Vậy không tồn tại n thỏa mãn
\(n^4+2n^3+2n^2+n+7=k^2\)
\(\Leftrightarrow\left(n^2+n\right)^2+\left(n^2+n\right)+7=k^2\)
\(\Leftrightarrow4\left(n^2+n\right)^2+4\left(n^2+n\right)+1+27=4k^2\)
\(\Leftrightarrow\left(2n^2+2n+1\right)^2-4k^2=-27\)
\(\Leftrightarrow\left(2n^2+2n+1-2k\right)\left(2n^2+2n+1+2k\right)=-27\)
Làm nôt
Giả sử có số \(n\) thoả đề. Khi đó do \(a\) chính phương nên \(4a\) cũng chính phương.
Và \(4a=4n^4+8n^3+8n^2+4n+28=\left(2n^2+2n+1\right)^2+27\)
Như vậy sẽ có 2 số chính phương lệch nhau \(27\) đơn vị là số \(4a\) và \(\left(2n^2+2n+1\right)^2\).
Ta sẽ tìm 2 số chính phương như thế.
-----
Ta sẽ giải pt nghiệm nguyên dương \(m^2-n^2=27=1.27=3.9\)
Ta có bảng:
\(m+n\) | \(27\) | \(9\) |
\(m-n\) | \(1\) | \(3\) |
\(m^2\) | \(196\) | \(36\) |
\(n^2\) | \(169\) | \(9\) |
------
Theo bảng trên thì số \(\left(2n^2+2n+1\right)^2\) (số chính phương nhỏ hơn) sẽ nhận giá trị \(169\) và \(9\).
Đến đây bạn tự giải tiếp nha bạn.
Đáp số: \(2;-3\)
\(n^2+2n+\sqrt{n^2+2n+18}+9\)là số chính phương thì \(\sqrt{n^2+2n+18}\)là số tự nhiên.
Khi đó \(n^2+2n+18=m^2\)
\(\Leftrightarrow\left(m-n-1\right)\left(m+n+1\right)=1.17\)
Do \(m,n\)là số tự nhiên nên
\(\hept{\begin{cases}m-n-1=1\\m+n+1=17\end{cases}}\Leftrightarrow\hept{\begin{cases}m=9\\n=7\end{cases}}\)
Với \(n=7\)thì \(n^2+2n+\sqrt{n^2+2n+18}+9=7^2+2.7+\sqrt{7^2+2.7+18}+9\)
\(=81=9^2\)là số chính phương (thỏa mãn).
Vậy \(n=7\).