Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Xet \(n=3k\)
\(\Rightarrow3^{6k}+3^{3k}+1\equiv3\left(mod13\right)\)
Xet \(n=3k+1\)
\(\Rightarrow3^{6k+2}+3^{3k+1}+1\equiv9+3+1\equiv0\left(mod13\right)\)
Xet \(n=3k+2\)
\(\Rightarrow3^{6k+3+1}+3^{3k+2}+1\equiv3+9+1\equiv0\left(mod13\right)\)
Vậy vơi mọi n tự nhiên và n không chia hêt cho 3 thì
\(3^{2n}+3^n+1⋮13\)
Lời giải:
Do \(3^3\equiv 1\pmod {13}\) nên ta sẽ xét modulo $3$ cho $n$
Nếu \(n=3k\):
\(A=3^{2n}+3^n+1=3^{6k}+3^{3k}+1\)
\(A\equiv 1^{2k}+1^k+1\equiv 3\pmod {13}\Rightarrow A\not\vdots 13\) (loại)
Nếu \(n=3k+1\)
\(A=3^{2n}+3^n+1=3^{6k+2}+3^{3k+1}+1\)
\(A\equiv 1^{2k}.3^2+1^k.3+1\equiv 13\equiv 0\pmod {13}\)\(\Rightarrow A\vdots 13\) (chọn)
Nếu \(n=3k+2\)
\(A=3^{2n}+3^n+1=3^{6k+4}+3^{3k+2}+1\)
\(A\equiv 1^{2k}.3^4+1^k.3^2+1\equiv 91\equiv 0\pmod {13}\)\(\Rightarrow A\vdots 13\) (chọn)
Vậy tất cả các số tự nhiên $n$ không chia hết cho $3$ thì thỏa mãn đkđb.
\(p=\left(n-1\right)^2\left[\left(n-1\right)^2+1\right]+1\)
\(\left(n-1\right)^4+2.\left(n-1\right)^2+1-\left(n-1\right)^2\)
\(\left[\left(n-1\right)^2+1\right]^2-\left(n-1\right)^2\)
\(\left[\left(n-1\right)^2+1-\left(n-1\right)\right]\left[\left(n-1\right)^2+1+\left(n-1\right)\right]\)
\(\left[n^2-3n+3\right]\left[n^2-n+1\right]\)
can
\(\orbr{\begin{cases}n^2-3n+3=1\Rightarrow n=\orbr{\begin{cases}n=2\\n=1\end{cases}}\\n^2-n+1=1\Rightarrow n=\orbr{\begin{cases}n=0\\n=1\end{cases}}\end{cases}}\)\(\orbr{\begin{cases}n^2-3n+3=1\\n^2-n+1=1\end{cases}}\)
n=(0,1,2)
du
n=2
ds: n=2
Có: 2n+2017=a^2 (1) (a,b ∈N)
n+2019=b^2 (2)
Từ (1)⇒ a lẻ ⇒ a=2k+1 (k∈N)
(1) trở thành 2n+2017=(2k+1)^2
⇔ n+1008=2k(k+1)
Vì k(k+1) là tích 2 số tự nhiên liên tiếp ⇒ k(k+1) chia hết cho 2
⇒ n+1008 chia hết cho 4 ⇒n chia hết cho 4 (vì 1008 chia hết cho 4)
Vì n chia hết cho 4 ⇒ b lẻ ⇒b=2h+1 (h∈N)
(2) trở thành n+2019=(2h+1)^2
⇔n+2018=4(h^2+h) (3)
Có: n chia hết cho 4, 2018 không chia hết cho 4
⇒ n+2018 không chia hết cho 4
mà 4(h^2+h) chia hết cho 4
Nên (3) vô lý
Vậy không tồn tại n thỏa mãn
biểu thức đã cho là số tự nhiên khi n^2+14n-256=a^2(a là số tự nhiên)
n^2+14n+49=a^2+49+256=a^2+305
(n+7)^2= a^2+305
vì n là số tự nhiên nên n+7 là số tự nhiên nên (n+7)^2 là số chính phương có dang b^2(b là số tự nhiên)
suy ra a^2+305=b^2
b^2-a^2=305
(b-a)(b+a)=305
vì a và b là số tự nhiên nên a+b là số tự nhiên và b+a>b-a
suy ra b+a là ước tự nhiên của 305={1;5;61;305}
nếu b+a=1 thì b-a=305>b+a(loại)
nếu b+a=5 thì b-a=61>b+a(loại)
nếu b+a=61 thì b-a=5 suy ra a=28 thay vào tìm được n=26
nếu b+a=305 thì b-a=1 suy ra a=152 thay vào tìm đươc n=146
vây n=26 hoặc n=146 tmđb