Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
đánh sai đề rồi bạn êi, phải là \(x\sqrt{1-y^2}+y\sqrt{2-z^2}+z\sqrt{3-x^2}=3\Leftrightarrow2x\sqrt{1-y^2}\) \(+2y\sqrt{2-z^2}+2z\sqrt{3-x^2}=6\)
<=> \(\left(x-\sqrt{1-y^2}\right)^2+\left(y-\sqrt{2-z^2}\right)^2+\left(z-\sqrt{3-x^2}\right)^2=0\)
<=> ..bla bla tự làm nhá !
Sử dụng Bất đẳng thức Bunyakovsky cho 2 bộ 3 số \(\left(\sqrt{1-y^2};\sqrt{2-z^2};\sqrt{3-x^2}\right)\) và \(\left(x,y,z\right)\) ta có
\(\left(x\sqrt{1-y^2}+y\sqrt{2-z^2}+z\sqrt{3-x^2}\right)^2\le\left(x^2+y^2+z^2\right)\cdot\left[6-\left(x^2+y^2+z^2\right)\right]\left(1\right)\)
Đặt \(x^2+y^2+z^2=a\) ta có Bất đẳng thức (1) tương đương
\(9=\left(x\sqrt{1-y^2}+y\sqrt{2-z^2}+z\sqrt{3-x^2}\right)^2\le\left(a\right)\cdot\left(6-a\right)\)
\(=-a^2+6a-9+9=-\left(a-3\right)^2+9\le9\)
Dấu "=" xảy ra khi Giải hệ phương trình trên ta được
Dấu "=" xảy ra khi \(\hept{\begin{cases}a=x^2+y^2+z^2=3\\\frac{x^2}{1-y^2}=\frac{y^2}{2-z^2}=\frac{z^2}{3-x^2}=1\end{cases}}\) giải hệ pt ta có \(\hept{\begin{cases}x=1\\y=0\\z=\sqrt{2}\end{cases}}\)
Thế nào nó bị lỗi nên không hiển thị
có \(x\sqrt{1-y^2}\le\frac{x^2+1-y^2}{2}\)
\(y\sqrt{2-z^2}\le\frac{y+2-z^2}{2}\) cô si
\(z\sqrt{3-x^2}\le\frac{z+3-x^2}{2}\)
\(\Rightarrow x\sqrt{1-y^2}+y\sqrt{2-z^2}+z\sqrt{3-x^2}\le\frac{6}{2}=3\)
dấu = xảy ra \(\Leftrightarrow\hept{\begin{cases}x=\sqrt{1-y^2}\\y=\sqrt{2-z^2}\\z=\sqrt{3-x^2}\end{cases}}\Leftrightarrow\hept{\begin{cases}x^2=1-y^2\\y^2=2-z^2\\z^2=3-x^2\end{cases}\Leftrightarrow\hept{\begin{cases}x=1\\y=0\\z=\sqrt{2}\end{cases}}}\)
Áp dụng BĐT \(ab\le\dfrac{a^2+b^2}{2}\)
\(x\sqrt{1-y^2}+y\sqrt{2-z^2}+z\sqrt{3-x^2}\le\dfrac{x^2+1-y^2}{2}+\dfrac{y^2+2-z^2}{2}+\dfrac{z^2+3-x^2}{2}=\dfrac{6}{2}=3\)
Dấu "=" xảy ra nên:
\(\left\{{}\begin{matrix}x=\sqrt{1-y^2}\\y=\sqrt{2-z^2}\\z=\sqrt{3-x^2}\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x^2=1-y^2\\y^2=2-z^2\\z^2=3-x^2\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x^2=1-\left(2-z^2\right)=z^2-1\\z^2=3-x^2\end{matrix}\right.\)
\(\Rightarrow x^2=3-x^2-1=2-x^2\Rightarrow x^2=1\Rightarrow x=1\Rightarrow y=0\Rightarrow z=\sqrt{2}\)
Vậy \(\left\{{}\begin{matrix}x=1\\y=0\\z=\sqrt{2}\end{matrix}\right.\)
Để lên lớp 9 rồi em giải cho
Mà em thấy CTV đâu rồi nhỉ
Các bn CTV phải giúp đỡ tình trạng thế này nhé
Chúc bn hok giỏi , sớm có người giải cho bn bài này
chắc là ko còn ai đâu,,tại bài cậu khó quá
\(\Leftrightarrow\left[x^2+\left(1-y^2\right)-2x\sqrt{1-y^2}\right]+\left[y^2+\left(2-z^2\right)-2y\sqrt{2-z^2}\right]+\left[z^2+\left(3-x^2\right)-2z\sqrt{3-x^2}\right]=0\)
\(\Leftrightarrow\left(x-\sqrt{1-y^2}\right)^2+\left(y-\sqrt{2-z^2}\right)^2+\left(z-\sqrt{3-x^2}\right)^2=0\)
\(\Leftrightarrow x=\sqrt{1-y^2};\text{ }y=\sqrt{2-z^2};\text{ }z=\sqrt{3-x^2};\text{ }\left(x,y,z\ge0\right)\)
\(\Leftrightarrow\left(x^2;y^2;z^2\right)=\left(1;0;2\right)\Leftrightarrow\left(x;y;z\right)=\left(1;0;\sqrt{2}\right)\)