K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

HQ
Hà Quang Minh
Giáo viên
18 tháng 9 2023

Các số thực x thỏa mãn điều kiện \(\left| x \right| = 2,5\) là các số thực có khoảng cách từ số đó đến gốc tọa độ O là 2,5.

Đó là 2 số -2,5 và 2,5 nằm về 2 phía so với gốc O và cách gốc O một khoảng 2,5 đơn vị.

Chú ý: Có 2 số thực là 2 số đối nhau thỏa mãn giá trị tuyệt đối của nó bằng một số dương cho trước.

\(|x|=a \Rightarrow x=a\) hoặc \(x=-a\)

3 tháng 1 2021

số cuối là 1 ko phải 11 nhá mn

Đề hình như hơi sai sai \(\left|x+2017\right|^{20}\)hay \(\left(x+2017\right)^{20}\)hay \(\left|x+2017\right|\)

Theo mk đề là: \(\left|x+2017\right|+\left|x+2018\right|=1\)

\(\left|x+2017\right|+\left|-x-2018\right|=1\)

+)Ta có: \(\left|a\right|+\left|b\right|\ge\left|a+b\right|\)nên

\(\left|x+2017\right|+\left|-x-2018\right|\ge\left|x+2017-x-2018\right|\)

\(\Rightarrow\left|x+2017\right|+\left|-x-2018\right|\ge\left|-1\right|\)

\(\Rightarrow\left|x+2017\right|+\left|-x-2018\right|\ge1\)

+)Dấu "=" xảy ra khi

\(\left(x+2017\right).\left(-x-2018\right)\ge0\)

\(\Leftrightarrow\hept{\begin{cases}x+2017\ge0\\-x-2018\ge0\end{cases}hoac\hept{\begin{cases}x+2017< 0\\-x-2018< 0\end{cases}}}\)

\(\Leftrightarrow\hept{\begin{cases}x\ge-2017\\-x\ge2018\end{cases}hoac\hept{\begin{cases}x< -2017\\-x< 2018\end{cases}}}\)

\(\Leftrightarrow\hept{\begin{cases}x\ge-2017\\x\le-2018\end{cases}hoac\hept{\begin{cases}x< -2017\\x>-2018\end{cases}}}\)

Vậy \(-2018< x< -2017\)(tm)

Chúc bạn học tốt

17 tháng 11 2016

khá là "dễ" chỉ cần nhân tùm lum hết ra r` phân tích lại dc

pt<=>-(x+2006)(64x2+256959x+257921626)=0

<=>x=-2006

AH
Akai Haruma
Giáo viên
15 tháng 12 2022

Lời giải:

Áp dụng TCDTSBN:

$\frac{x}{y}=\frac{y}{z}=\frac{z}{x}=\frac{x+y+z}{y+z+x}=1$

$\Rightarrow x=y; y=z; z=x\Rightarrow x=y=z$

Khi đó:

$|x+y|=|z-1|$

$\Leftrightarrow |2x|=|x-1|$

$\Rightarrow 2x=x-1$ hoặc $2x=-(x-1)$

$\Rightarrow x=-1$ hoặc $x=\frac{1}{3}$ (đều thỏa mãn)

Vậy $(x,y,z)=(-1,-1,-1)$ hoặc $(\frac{1}{3}, \frac{1}{3}, \frac{1}{3})$

19 tháng 1 2018

Ta có: \(\hept{\begin{cases}\left(5x-y\right)^{2016}\ge0\\\left|x^2-4\right|^{2017}\ge0\end{cases}\Rightarrow\left(5x-y\right)^{2016}+\left|x^2-4\right|\ge}0\)

Mà \(\left(5x-y\right)^{2016}+\left|x^2-4\right|^{2017}\le0\)

\(\Rightarrow\hept{\begin{cases}\left(5x-y\right)^{2016}=0\\\left|x^2-4\right|^{2017}=0\end{cases}\Rightarrow\hept{\begin{cases}5x-y=0\\x^2-4=0\end{cases}}\Rightarrow\hept{\begin{cases}y=\pm10\\x=\pm2\end{cases}}}\)

Vậy các cặp (x;y) là (2;10);(-2;-10)

19 tháng 1 2018

cảm ơn

AH
Akai Haruma
Giáo viên
11 tháng 12 2023

Lời giải:

$|x|=4,5$

$\Rightarrow x=4,5$ hoặc $x=-4,5$

24 tháng 2 2016

thay x=-2,5 vào ta dc

(2.(-2.5))2106+(5y-4)2016

=0+(5y-4)2016

=>(5y-4)2016=0

rồi bạn tìm y

24 tháng 2 2016

(2x + 5)2016 + (5y - 4)2016 luôn \(\ge0\)

Mà theo đề: \(\left(2x+5\right)^{2016}+\left(5y-4\right)^{2016}\le0\)

=> (2x + 5)2016 = (5y + 4)2016 = 0

Đề đã cho x = -2,5

=> 5y + 4 = 0

=> 5y = -4

=> y = -4/5