K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 9 2021

\(\frac{x+1}{x-2}\)

Để \(\frac{x+1}{x-2}\inℤ\Rightarrow x+1⋮x-2\Rightarrow\left(x-2\right)+3⋮x-2\Rightarrow3⋮x-2\)

\(\Rightarrow x-2\inƯ\left(3\right)=\left\{\pm1;\pm3\right\}\Rightarrow x\in\left\{3;1;5;-1\right\}\)

14 tháng 9 2021

\(\frac{12x+1}{30x+2}\)

Gọi \(n=ƯC\left(12x+1;30x+2\right)\)

\(\Rightarrow\hept{\begin{cases}12x+1⋮n\Rightarrow60x+5⋮n\\30x+2⋮n\Rightarrow60x+4⋮n\end{cases}}\)

\(\Rightarrow\left(60x+5\right)-\left(60x+4\right)⋮x\Rightarrow1⋮n\Rightarrow n=1\Rightarrow\frac{12x+1}{30x+2}\)là phân số tối giản

Bài 1

a) Để x-3/x+3 là một số nguyên thì x+3 khác 0 và x-3 ko chia hết cho x+3

=>x+3-6 ko chia hết cho x+3

=>6 ko chia hết cho x-3

=>x-3 ko thuộc Ư(6)={1;2;3;6;-1;-2;-3;-6}

=> x-3 khác {1;2;3;6;-1;-2;-3;-6}

=>x khác {4;5;6;9;2;1;0;-3}

b) Để A là một số nguyên thì x-3 chia hết cho x+3

=>x+3-6 chia hết cho x-3

=>6 chia hết cho x-3

=>x-3 thuộc Ư(6)={1;2;3;6;-1;-2;-3;-6}

Đến đây bn tự lm phần còn lại nha

Bài 2:

Câu a  lm giống như câu b bài 1 nha bn

b) Bn tham khảo nha

 https://hoidap247.com/cau-hoi/346697

Tìm cái bài thứ hai ý nhưng nhìn hơi khó

6 tháng 2 2019

B)

Vì (7n+6)/(6n+7) chưa tối giản

=>7n+6 và 6n+7 cùng chia hết cho d (d E N,d # 1)

=>(7n+6)-(6n+7) chia hết cho d

=>n-1 chia hết cho d

Mà 6n+7 chia hết cho d

=>(6n+7)-6(n-1) chia hết cho d

=>13 chia hết cho d

=>d E Ư(13)={1;13}

Mà d#1

=>d=13

=>n-1=13k (k E N)

=>n=13k+1

Vậy với n=13k+1 thì (7n+6)/(6n+7) chưa tối giản

6 tháng 2 2019

a) \(\frac{5}{x}-\frac{y}{3}=\frac{1}{6}\)

=> \(\frac{5}{x}=\frac{1}{6}+\frac{y}{3}\)

=> \(\frac{5}{x}=\frac{1+2y}{6}\)

=> 5.6 = x(1 + 2y)

=> x(1 + 2y) = 30 = 1 . 30 = 30 . 1 = 2 . 15 = 15 . 2 = 5 . 6 = 6. 5 = 3 . 10 = 10 .3

Vì 1 + 2y là số lẽ nên 1  + 2y \(\in\){1; 15; 3; 5}

Lập bảng : 

x 30 2 10 6
1 + 2y 1 15 3 5
 y 0 7 1 2

Vì x và y là số nguyên tố nên ....

\(\frac{n+1}{n-2}\) là số nguyên \(\Leftrightarrow n+1⋮n-2\)

\(\Rightarrow n-2+3⋮n-2\)

\(\Rightarrow3⋮n-2\)

\(\Rightarrow n-2\inƯ\left(3\right)=\left\{\pm1;\pm3\right\}\)

\(\Rightarrow n-2\in\left\{1;-1;3;-3\right\}\)

\(\Rightarrow n\in\left\{3;1;5;-1\right\}\)