K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
CC
1
Các câu hỏi dưới đây có thể giống với câu hỏi trên
N
0
TL
1
KN
25 tháng 2 2021
* Xét p = 2 thì \(2^p+p^2=2^2+2^2=8\)(loại, không là số nguyên tố)
* Xét p = 3 thì \(2^p+p^2=2^3+3^2=17\)(là số nguyên tố)
* Xét p > 3 thì \(2^p+p^2=\left(2^p+1\right)+\left(p^2-1\right)⋮3\)(Do p lẻ nên \(2^p+1⋮3\)và p không chia hết cho 3 nên\(p^2-1⋮3\))
Lại có \(2^p+p^2>2^3+3^2=17>3\)nên không là số nguyên tố
Vậy p = 3 thì 2p + p2 là số nguyên tố
Note: trường hợp p > 3 còn có một cách nữa là sử dụng đồng dư
p là số nguyên tố lớn hơn 3 thì \(2^p\equiv2\left(mod3\right)\Rightarrow2^p\)chia 3 dư 2
Mặt khác p là số nguyên tố lẻ hên \(p^2\)chia 3 dư 1 suy ra \(2^p+p^2⋮3\)
Done!
G
1
C
0
TQ
0
TQ
0
Đề bài: tìm tất cả các số nguyên tố p để 8p2+1 và 8p2-1 là số nguyên tố
Trả lời: Đây là dạng toán lớp 6 chứ
B1: Thử các snt p -> khi đạt gtri thỏa mãn
B2: Nếu p> số nt tìm đc ( lớn nhất ) Có dạng j
-> Cm vô lý.