K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 12 2017
a
5 tháng 1 2019

31 tháng 12 2019

Đáp án B.

Phương trình hoành độ giao điểm của (C) và d : x − 2 x − 1 = − x + m  

⇔ x ≠ 1 x − 2 = ( − x + m ) ( x − 1 ) ⇔ x ≠ 1 f ( x ) = x 2 − m x + m − 2 = 0 ( * )  

Để (C) và d cắt nhau tại hai điểm phân biệt A, B khi và chỉ khi phương trình (*) có hai nghiệm phân biệt x 1 , x 2  khác 1

⇔ f ( 1 ) = 1 2 − m + m − 2 ≠ 0 Δ = - m 2 − 4 ( m − 2 ) > 0 ⇔ − 1 ≠ 0 m 2 − 4 m + 8 m > 0 ⇔ m ∈ ℝ .

Mặt khác OAB là tam giác nên  O ∈ d  hay m ≠ 0  .

Gọi A ( x 1 ; − x 1 + m )  và B ( x 2 ; − x 2 + m )  . Suy ra O A = 2 x 1 2 − 2 m x 1 + m 2 O B = 2 x 2 2 − 2 m x 2 + m 2  

Do x 1 , x 2  là hai nghiệm của phương trình (*) nên x 1 2 − m x 1 = 2 − m x 2 2 − m x 2 = 2 − m  

Khi đó   O A = 2 ( 2 − m ) + m 2 = m 2 − 2 m + 4 O B = 2 ( 2 − m ) + m 2 = m 2 − 2 m + 4

Từ giả thiết ta có :

2 m 2 − 2 m + 4 = 1 ⇔ m 2 − 2 m + 4 = 2 ⇔ m ( m − 2 ) = 0 ⇔ m = 0 m = 2

Đối chiếu với điều kiện ta được m=2 thỏa mãn.

28 tháng 7 2019

Đáp án C

Phương pháp giải:

Chọn hệ số a, b, c hoặc đánh giá tích để biện luận số nghiệm của phương trình

Lời giải:

Cách 1. Ta có: 

Lại có  có 3 nghiệm thuộc khoảng 

Cách 2. Chọn  và đồ thị hàm số cắt trục Ox tại 3 điểm phân biệt

25 tháng 9 2019

7 tháng 1 2019

Đáp án D

Đặt u = 2 x + 1 ⇔ u 2 = 2 x + 1 ⇔ d x = u d u  và đổi cận x = 0 ⇒ u = 1 x = 4 ⇒ u = 3  

Khi đó  ∫ 0 4 2 x 2 + 4 x + 1 2 x + 1 d x = ∫ 1 3 2 u 2 - 1 2 2 + 4 . u 2 - 1 2 + 1 u . u d u = ∫ 1 3 1 2 u 2 - 1 2 + 2 u 2 - 1 d u

= 1 2 ∫ 1 3 u 4 - 2 u 2 + 1 + 4 u 2 - 2 d u = 1 2 ∫ 1 3 u 4 + 2 u 2 - 1 d u = 1 2 ∫ 1 3 a u 4 + b u 2 + c d u ⇒ a = 1 b = 2 c = - 1

AH
Akai Haruma
Giáo viên
8 tháng 1 2017

Lời giải:

Từ điều kiện đề bài ta có:

\(\frac{c-1}{c}=1-\frac{1}{c}=\frac{1}{a}+\frac{1}{b}=\frac{a+b}{ab}=\frac{1-c}{ab}\) \(\Leftrightarrow (c-1)\left(\frac{1}{c}+\frac{1}{ab}\right)=0\)

\(\Leftrightarrow (c-1)\left(\frac{1}{1-a-b}+\frac{1}{ab}\right)=\frac{(a-1)(b-1)(c-1)}{abc}=0\)

Do đó tồn tại ít nhất một trong các số đã cho có giá trị bằng $1$

5 tháng 3 2016

\(Q=\frac{a}{b+c}+\frac{b}{a+c}+\frac{c}{a+b}\)

\(=>Q=\left(\frac{a}{b+c}+1\right)+\left(\frac{b}{a+c}+1\right)+\left(\frac{c}{a+b}+1\right)-3\)

\(=>Q=\left(\frac{a+b+c}{b+c}\right)+\left(\frac{a+b+c}{a+c}\right)+\left(\frac{a+b+c}{a+b}\right)-3\)

\(=>Q=\left(a+b+c\right).\left(\frac{1}{b+c}+\frac{1}{a+c}+\frac{1}{a+b}\right)-3\)

\(=>Q=259.15-3=3882\)

Vậy Q=3882

5 tháng 3 2016

\(Q=\frac{a}{b+c}+\frac{b}{a+c}+\frac{c}{a+b}=\frac{259-\left(b+c\right)}{b+c}+\frac{259-\left(a+c\right)}{a+c}+\frac{259-\left(a+b\right)}{a+b}\)

\(=259.\left(\frac{1}{a+b}+\frac{1}{b+c}+\frac{1}{a+c}\right)+\left[\frac{-\left(b+c\right)}{b+c}+\frac{-\left(a+c\right)}{a+c}+\frac{-\left(a+b\right)}{a+b}\right]\)

tới đây tự làm tiếp