\(5^3\cdot25^n=5^{3n}\)

...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: \(5^3\cdot25^n=5^{3n}\)

\(\Leftrightarrow5^{3n}=5^3\cdot5^{2n}\)

=>3n=2n+3

hay n=3

b: \(a^{\left(2n+6\right)\left(3n-9\right)}=1\)

=>(2n+6)(3n-9)=0

=>n=-3 hoặc n=3

c: \(\dfrac{1}{3}\cdot3^n=7\cdot3^2\cdot3^4-2\cdot3^n\)

\(\Leftrightarrow3^n\cdot\dfrac{1}{3}+3^n\cdot2=7\cdot3^6\)

\(\Leftrightarrow3^n=3^7\)

hay n=7

18 tháng 6 2016

\(a,9.3^3.\frac{1}{81}.3^2=3^2.3^3.3^{\left(-4\right)}.3^2=3^{2+3-4+2}=3^3.\)

\(b,4.2^5:\left(2^3.\frac{1}{16}\right)=2^2.2^5:\left(2^3.2^{-4}\right)=2^{2+5}:2^{3-4}=2^7:2^{-1}=2^{7-\left(-1\right)}=2^8.\)

\(c,3^2.2^5.\left(\frac{2}{3}\right)^2=3^2.2^5.\frac{2^2}{3^2}=\left(\frac{3^2}{3^2}\right).\left(2^5.2^2\right)=1.2^{5+2}=2^7\)

\(d,\left(\frac{1}{3}\right)^2.\frac{1}{3}.9^2=\left(\frac{1}{3}\right)^2.\frac{1}{3}.\left(3^2\right)^2=\left(\frac{1}{3}\right)^{2+1}.3^4=\left(\frac{1}{3}\right)^3.\left(\frac{1}{3}\right)^{-4}=\left(\frac{1}{3}\right)^{3-4}=\left(\frac{1}{3}\right)^{-1}=3^1\)