Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu hỏi của Minh Nguyễn Cao - Toán lớp 9 - Học toán với OnlineMath
Em tham khảo nhé!
Không mất tính tổng quát.
g/s : \(x\ge y\ge z\)\(\ge1\)
Theo bài ra ta có: \(\left(xy+1\right)\left(yz+1\right)\left(zx+1\right)⋮xyz\)
=> \(\left(xy^2z+yz+xy+1\right)\left(zx+1\right)⋮xyz\)
=> tồn tại số nguyên dương k sao cho: \(xy+yz+zx+1=k.xyz\)
=> \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}+\frac{1}{xyz}=k\)
=> \(k\le1+1+1+1=4\)(1)
TH1: k = 4 khi đó dấu "=" của bất đẳng thức (1) xảy ra khi và chỉ khi x=y=z=1 ( tm)
TH2: k=3
=> \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}+\frac{1}{xyz}=3\)
=>\(3\le\frac{1}{z}+\frac{1}{z}+\frac{1}{z}+\frac{1}{z^3}\)
=> \(3\le\frac{3}{z}+\frac{1}{z^3}\)=> z=1
=> \(\frac{1}{x}+\frac{1}{y}+\frac{1}{xy}=2\)
=> \(2\le\frac{1}{y}+\frac{1}{y}+\frac{1}{y^2}=\frac{2}{y}+\frac{1}{y^2}\)=> y=1
Với z=1; y=1 => \(\frac{1}{x}+\frac{1}{x}=1\Rightarrow x=2\)
Vậy x=2, y=z=1 ( thử vào thỏa mãn)
TH3: k=2
Ta có: \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}+\frac{1}{zyx}=2\)
=> \(2\le\frac{3}{z}+\frac{1}{z^3}\)=> z=1
=> \(\frac{1}{x}+\frac{1}{y}+\frac{1}{xy}=1\)
=> \(1\le\frac{2}{y}+\frac{1}{y^2}\)=> y=2 hoặc y=1
Với y=1 => \(\frac{1}{x}+\frac{1}{x}=0\left(loai\right)\)
Với y=2 => \(\frac{1}{x}+\frac{1}{2x}=\frac{1}{2}\Rightarrow x=3\)
Vậy x=3; y=2; z=1 ( thử vào thỏa mãn)
TH4: K=1
=> \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}+\frac{1}{xyz}=1\)
=> \(1\le\frac{3}{z}+\frac{1}{z^3}\)=> z=1 hoặc z=2 hoặc z=3
Với z=1 => \(\frac{1}{x}+\frac{1}{y}+\frac{1}{xy}=0\)loại
Với \(z=2\Rightarrow\frac{1}{x}+\frac{1}{y}+\frac{1}{2xy}=\frac{1}{2}\)
=> \(\frac{1}{2}\le\frac{2}{y}+\frac{1}{2y^2}\)=> y=1 (loại), y=2 (loại ); y=3 => x=7 ; y=4 => x= 9/2(loại); y>5 loại
Với z =3 => \(\frac{1}{x}+\frac{1}{y}+\frac{1}{3}+\frac{1}{3xy}=1\)=> \(\frac{1}{x}+\frac{1}{y}+\frac{1}{3xy}=\frac{2}{3}\)
=> \(\frac{2}{3}\le\frac{2}{y}+\frac{1}{3y^2}\)=> y=1 ( loại ), y=2 => x=7 (tm) , y=3 => x=10/3 (loại); y>4 ( loại)
TH này x=7; y=2; z=1 ( thử vào ko thỏa mãn) hoặc x=7; y=3 ; z=1 ( thử vào ko thỏa mãn)
Vậy: (x; y; z) là bộ ba số (1; 1; 1), (3; 2; 1); (2; 1;1 ) và các hoán vị của chúng
Ps: Cầu một cách ngắn gọn hơn! Thanks
\(\hept{\begin{cases}x+y=z\left(1\right)\\x^3+y^3=z^2\left(2\right)\end{cases}}\)
Ta thế (1) vào (2) : \(\left(x+y\right)^3-3xy\left(x+y\right)=\left(x+y\right)^2\)
<=> \(\left(x+y\right)^2-3xy=\left(x+y\right)\)
Đặt: \(x+y=S;xy=P\)vì x, y nguyên dương => S; P nguyên dương
ĐK để tồn tại nghiệm x, y là: \(S^2\ge4P\)
Có: \(S^2-3P=S\)
=> \(S+3P\ge4P\)<=> \(S\ge P\)
=> \(S^2-S=3P\le3S\)
<=> \(0\le S\le4\)
+) S = 0 loại
+) S = 1 => P = 0 loại
+) S = 2 => P =3/2 loại
+) S = 3 => P = 2
=> \(\hept{\begin{cases}x+y=3\\xy=2\end{cases}}\)<=> x =2; y =1 hoặc x = 1; y =2
=> (x; y; z ) = ( 1; 2; 3) thử lại thỏa mãn
hoặc (x; y; z) = ( 2; 1; 3 ) thử lại thỏa mãn
+) S = 4 => P = 4
=> \(\hept{\begin{cases}x+y=4\\xy=4\end{cases}\Leftrightarrow}x=y=2\)
=> (x; y; z ) = ( 2; 2; 4) thử lại thỏa mãn.
Vậy: có 3 nghiệm là:....
Ta có x + \(\frac{1}{x}\ge2\)
y2 + \(\frac{1}{y}+\frac{1}{y}\ge3\)
z3 + \(\frac{1}{z}+\frac{1}{z}+\frac{1}{z}\ge4\)
Cộng vế theo vế ta được
x + y2 + z3 + \(\frac{1}{x}+\frac{2}{y}+\frac{3}{z}\ge9\)
Dấu bằng xảy ra khi x = y = z = 1
Hệ đã cho tương đương với :
\(\hept{\begin{cases}xy+x+y+1=4\\yz+y+z+1=9\\xz+x+z+1=16\end{cases}}\) \(\Leftrightarrow\hept{\begin{cases}\left(x+1\right)\left(y+1\right)=4\\\left(y+1\right)\left(z+1\right)=9\\\left(z+1\right)\left(x+1\right)=16\end{cases}}\)
Nhân các phương trình theo vế : \(\left[\left(x+1\right)\left(y+1\right)\left(z+1\right)\right]^2=24^2\)
\(\Leftrightarrow\orbr{\begin{cases}\left(x+1\right)\left(y+1\right)\left(z+1\right)=24\\\left(x+1\right)\left(y+1\right)\left(z+1\right)=-24\end{cases}}\)
Từ đây thay vào từng phương trinh trên để tìm x,y,z , rồi từ đó suy ra P
Ta có:
\(8x+8y+8z< 8x+9y+10z\)
\(\Rightarrow x+y+z< \frac{100}{8}< 13\)
\(\Rightarrow Gt\Leftrightarrow11< x+y+z< 13\)
Mà x+y+z nguyên dương \(\Rightarrow x+y+z=12\)
Ta có hệ: \(\hept{\begin{cases}x+y+z=12\left(1\right)\\8x+9y+10z=100\left(2\right)\end{cases}}\)
Nhân 2 vế của (1) với 8 ta đc:
\(\hept{\begin{cases}8x+8y+8z=96\left(3\right)\\8x+9y+10z=100\left(2\right)\end{cases}}\)
Trừ theo vế của (2) cho (3) ta đc:\(y+2z=4\left(4\right)\).
Từ \(\left(4\right)\Rightarrow z=1\)(vì nếu \(z\ge2\), thì do\(y\ge1\Rightarrow y+2z\ge4\),Mâu thuẫn)
Với \(z=1\Rightarrow y=2;x=9\)
Vậy...
Do các số x,y,zx,y,z nguyên dương nên
x+y+z>11 suy ra x+y+z≥12
Có
100=8(x+y+z)+(y+2z)≥96+(y+2z)
Suy ra
4≥y+2z≥3
Tức là
y+2z ∈ {3;4}
Theo đề bài thì
8x+9y+10z=100
Số y là số chẵn .
Tức là y+2z cũng là số chẵn .
Suy ra
y+2z=4 Hay y=2; z=1
Thế ngược lại vào
8x+9y+10z=100 tìm được x=9
Vậy (x,y,z)=(9,2,1)