Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt \(\hept{\begin{cases}x+y=a\\xy=b\end{cases}}\) thì ta có phương trình:
\(ab^2+a=3+b\Leftrightarrow a\left(b^2+1\right)=b+3\)
\(\Leftrightarrow a=\frac{b+3}{b^2+1}\). Nếu \(b=3\) vô nghiệm thì xét \(b\ne3\)
Khi đó: \(a=\frac{b+3}{b^2+1}\Leftrightarrow a\left(b-3\right)=\frac{b^2-9}{b^2+1}\)\(=\frac{b^2+1-10}{b^2+1}\)
\(=\frac{b^2+1}{b^2+1}-\frac{10}{b^2+1}=1-\frac{10}{b^2+1}\)
Suy ra \(b^2+1\inƯ\left(10\right)=....\)
Tự làm nốt nhá, trở thành bài lớp 6 r` :)
Coi PT trên là phương trình bậc 2 ẩn x.
Ta có: x2-(y+1)x+(y2-y)=0
PT có nghiệm <=> \(\Delta\)>=0
<=>(y+1)2-4.1(y2-y)>=0
<=>-3y2+6y+1>=0
<=>\(\frac{3-2\sqrt{3}}{3}\le y\le\frac{3+2\sqrt{3}}{3}\) (Đưa về PT tích)
Mà y nguyên
=>y E {0;1;2}
Với y=0 =>x=0
Với y=1 => x=2
Với y=2 => x=1
Vậy ...
Với y=1 =>
\(x^5+y^2=xy^2+1\)
\(\Rightarrow x^5+y^2-xy^2-1=0\)
\(\Leftrightarrow\left(x^5-1\right)-\left(xy^2-y^2\right)=0\)
\(\Leftrightarrow\text{ }\left(x-1\right)\left(x^4+x^3+x^2+x+1\right)-y^2\left(x-1\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(x^4+x^3+x^2+x+1-y^2\right)=0\)
Ta có: 2x2 + 2xy - x + y = 66
<=> (x + y)2 + x2 - y2 - (x - y) = 66
<=> (x + y)^2 - 1 + (x - y)(x + y - 1) = 65
<=> (x + y - 1)(x + y + 1) + (x - y)(x + y - 1) = 65
<=> (x + y - 1)(x + y + 1 + x - y) = 65
<=> (x + y - 1)(2x + 1) = 65 = 1. 65 = 5.13 (vì x,y nguyên dương)
Lập bảng:
x + y - 1 | 1 | 5 | 13 | 65 |
2x + 1 | 65 | 13 | 5 | 1 |
x | 32 | 6 | 2 | 0 |
y | -30 (ktm) | 0 | 12 | 66 |
Vậy ...