Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt \(n^4+n^3+1=a^2\)
\(\Leftrightarrow64n^4+64n^3+64=\left(8a\right)^2\)
\(\Leftrightarrow\left(8n^2+4n-1\right)^2-16n^2+8n+16n^2+63=\left(8a\right)^2\)
\(\Leftrightarrow\left(8n^2+4n-1\right)^2+8n+63=\left(8a\right)^2\)
\(\Rightarrow\left(8a\right)^2>\left(8n^2+4n-1\right)^2\)
\(\Rightarrow\left(8a\right)^2\ge\left(8n^2+4n\right)^2\)
\(\Rightarrow\left(8n^2+4n-1\right)^2+8n+63\ge\left(8n^2+4n\right)^2\)
\(\Rightarrow\left(8n^2+4n\right)^2-2\left(8n^2+4n\right)+1+8n+63\ge\left(8n^2+4n\right)^2\)
\(\Rightarrow16n^2\le64\)
\(\Rightarrow n^2\le4\Rightarrow n\in\left\{1;2\right\}\) vì m nguyên dương.
Vậy ....
666666666666666666666666666666666666667777777777777777777777777788888888888888888888899999999999999999999999999944444444444444444444445555555555555555555523243435356666356467578556475786896897896756745342111111111111111111111122222222222222222223333333333333333333333333333333333344444454444444444444555555555555556666666666666666666666777777777777777777777778888888888888899999999999999101010101010101010101010101001010010100101001010010100000000000000000000000000000000000000000000001111111111111111111111000000000000000010101010
Giả sử n4+n3+1 là SCP
Vì n4+n3+1=(n2)2 nên ta có:
n4+n3+1=(n2+k)2=n4+2kn2+k2 ( k là 1 số nguyên dương)
=>n2(n-2k)=k2-1\(\ge\)0
Đặc biệt k2-1 chia hết n2
Do đó k2=1 hoặc n2\(\le\)k2-1
- Nếu k2=1 thì k=1; n2(n-2)=0 ta có n=2 (tm)
- Nếu \(k\ne1\)thì k2>k2-1\(\ge\)n2
=>k>n =>n-2<0 (mâu thuẫn với n2(n-2k)=k2-1\(\ge\)0)
Vậy n=2 thỏa mãn
Xét n=0n=0 không thỏa mãn.
Xét n≥1n≥1
Với n∈Nn∈N thì:A=n4+2n3+2n2+n+7=(n2+n)2+n2+n+7>(n2+n)2A=n4+2n3+2n2+n+7=(n2+n)2+n2+n+7>(n2+n)2
Mặt khác, xét :
A−(n2+n+2)2=−3n2−3n+3<0A−(n2+n+2)2=−3n2−3n+3<0 với mọi n≥1n≥1
⇔A<(n2+n+2)2⇔A<(n2+n+2)2
Như vậy (n2+n)2<A<(n2+n+2)2(n2+n)2<A<(n2+n+2)2, suy ra để $A$ là số chính phương thì
A=(n2+n+1)2⇔n4+2n3+2n2+n+7=(n2+n+1)2A=(n2+n+1)2⇔n4+2n3+2n2+n+7=(n2+n+1)2
⇔−n2−n+6=0⇔(n−2)(n+3)=0⇔−n2−n+6=0⇔(n−2)(n+3)=0
Suy ra n=2
Ta xét 3 trường hợp:
TH1: n<2010n<2010
⇒⎧⎪⎨⎪⎩n−2010<0n−2011<0n−2012<0⇒(n−2010)(n−2011)(n−2012)<0,⇒{n−2010<0n−2011<0n−2012<0⇒(n−2010)(n−2011)(n−2012)<0, không là số chính phương.
TH2: 2010≤n≤20122010≤n≤2012
Xét tường trường hợp của nn ta đều được A=0,A=0, là số chính phương.
TH3: n>2012n>2012
⇒⎧⎪⎨⎪⎩n−2010>0n−2011>0n−2012>0⇒{n−2010>0n−2011>0n−2012>0
Do đó AA là tích của 33 số nguyên dương liên tiếp, theo bổ đề thi AA không là số chính phương.
Vậy để AA là số chính phương thì n∈{2010; 2011; 2012}.n∈{2010; 2011; 2012}.
CHÚC BẠN HỌC GIỎI
TK MÌNH NHÉ
Ta xét 3 trường hợp:
TH1: n<2010n<2010
⇒⎧⎪⎨⎪⎩n−2010<0n−2011<0n−2012<0⇒(n−2010)(n−2011)(n−2012)<0,⇒{n−2010<0n−2011<0n−2012<0⇒(n−2010)(n−2011)(n−2012)<0, không là số chính phương.
TH2: 2010≤n≤20122010≤n≤2012
Xét tường trường hợp của nn ta đều được A=0,A=0, là số chính phương.
TH3: n>2012n>2012
⇒⎧⎪⎨⎪⎩n−2010>0n−2011>0n−2012>0⇒{n−2010>0n−2011>0n−2012>0
Do đó AA là tích của 33 số nguyên dương liên tiếp, theo bổ đề thi AA không là số chính phương.
Vậy để AA là số chính phương thì n∈{2010; 2011; 2012}.n∈{2010; 2011; 2012}.
\(n^4+2n^3+2n^2+n+7=k^2\)
\(\Leftrightarrow\left(n^2+n\right)^2+\left(n^2+n\right)+7=k^2\)
\(\Leftrightarrow4\left(n^2+n\right)^2+4\left(n^2+n\right)+1+27=4k^2\)
\(\Leftrightarrow\left(2n^2+2n+1\right)^2-4k^2=-27\)
\(\Leftrightarrow\left(2n^2+2n+1-2k\right)\left(2n^2+2n+1+2k\right)=-27\)
Làm nôt
Đặt \(A=n\left(n+1\right)\left(n+7\right)\left(n+8\right)\)
\(=\left(n^2+8n\right)\left(n^2+8n+7\right)\) (1)
Đặt \(t=n^2+8n\) Vì n > 0 nên t > 0
Vì A là số chính phương đặt A=k2 \(\left(k\in N\right)\) Vì t>0 => k > 0
(1) \(\Rightarrow\) \(t\left(t+7\right)=k^2\)
\(\Leftrightarrow4t^2+28t-4k^2=0\)
\(\Leftrightarrow\left(4t^2+28t+49\right)-4k^2-49=0\)
\(\Leftrightarrow\left(2t+7\right)^2-\left(2k\right)^2=49\)
\(\Leftrightarrow\left(2t+7-2k\right)\left(2t+7+2k\right)=49\)
Xét các ước của 49 với chú ý rằng \(2t+7-2k< 2t+7+2k\) vì k > 0 từ đó dễ dàng tìm được t
Sau đó ta tìm được các giá trị của n.